Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2009, Vol. 3 Issue (4) : 427-435    https://doi.org/10.1007/s11705-009-0244-z
Research articles
A review of traditional and novel detection techniques for melamine and its analogues in foods and animal feed
Mengshi LIN,
Food Science Program, Division of Food Systems & Bioengineering, University of Missouri, Columbia, MO 65211, USA;
 Download: PDF(246 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Melamine, a nitrogen-rich chemical, has received much attention in recent years due to a series of highly publicized food safety incidents, including 2007 pet food recalls in North America and 2008 melamine contamination in milk, infant formula, and other milk-derived products in China. Current analytical methods for testing melamine are time-consuming, expensive, and labor-intensive. Therefore, there is an increasing interest in the food science and analytical chemistry field to develop simple, quick, sensitive, and cost-effective methods for detection of melamine and its analogues (e.g., cyanuric acid, melamine cyanurate, ammelide, and ammeline) in food ingredients, processed food, and animal feed. This review aims to summarize traditional and novel analytical techniques that have been used or show great potential to detect, characterize, and quantify melamine and its analogues in foods and animal feed.
Issue Date: 05 December 2009
 Cite this article:   
Mengshi LIN. A review of traditional and novel detection techniques for melamine and its analogues in foods and animal feed[J]. Front. Chem. Sci. Eng., 2009, 3(4): 427-435.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0244-z
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I4/427
Lund K H, Petersen J H. Migration of formaldehydeand melamine monomers from kitchen- and tableware made of melamineplastic. Food Additives and Contaminants, 2006, 23(9): 948―955

doi: 10.1080/02652030500415660
Marchewka M K. Infrared and Raman spectra of the new melaminium salt: 2,4,6-triamino-1,3,5-triazin-1-iumhydrogenphthalate. Materials Letters, 2004, 58(6): 843―848

doi: 10.1016/j.matlet.2003.07.022
Sugita T, Ishiwata H, Yoshihira K. Release of formaldehyde and melamine from tableware madeof melamine formaldehyde resin. Food Additives& Contaminants, 1990, 7(1): 21―27
Tseng C-H, Mann C K, Vickers T J. FT-Raman determination of melamine and melamine cyanuratein nylon. Applied Spectroscopy, 1994, 48(4): 535―537

doi: 10.1366/000370294775268857
Perdigao L M A, Champness N R, Beton P H. Surface self-assembly of the cyanuric acid-melamine hydrogenbonded network. Chemical Communications, 2006, (5): 538―540

doi: 10.1039/b514389f
Yi W, Bei W, Wang Q G. Crystal-structure of melamine cyanuric acid complex (1:1) trihydrochloride, MCA3HC1. Journal ofCrystallographic and Spectroscopic Research, 1990, 20(1): 79―84

doi: 10.1007/BF01181678
W HO. Toxicological and health aspects of melamine and cyanuric acid. Report of a WHO expert meeting in collaborationwith FAO supported by Health Canada. Geneva: World Health Organization, 2009
He L, Liu Y, Lin M, Awika J, Ledoux D R, Li H, Mustapha A. A new approach to measuremelamine, cyanuric acid, and melamine cyanurate using surface enhancedRaman spectroscopy coupled with gold nanosubstrates. Sensing and Instrumentation for Food Quality and Safety, 2008, 2(1): 66―71

doi: 10.1007/s11694-008-9038-0
Heller D N, Nochetto C B. Simultaneous determinationand confirmation of melamine and cyanuric acid in animal feed by zwitterionichydrophilic interaction chromatography and tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22(22): 3624―3632

doi: 10.1002/rcm.3779
Huang G, Ouyang Z, Cooks R G. High-throughput trace melamine analysis in complex mixtures. Chemical Communications, 2009, (5): 556―558

doi: 10.1039/b818059h
Karbiwnyk C M, Andersen W C, Turnipseed S B, Storey J M, Madson M R, Miller K E, Gieseker C M, Miller R A, Rummel N G, Reimschuessel R. Determination of cyanuricacid residues in catfish, trout, tilapia, salmon and shrimp by liquidchromatography-tandem mass spectrometry. Analytica Chimica Acta, 2009, 637(1―2): 101―111

doi: 10.1016/j.aca.2008.08.037
Robinson J, Frame E M S, Frame II G M. Undergraduate Instrumental Analysis. 6th ed. New York: Marcel Dekker, 2005
Lin M, He L, Awika J, Yang L, Ledoux D R, Li H, Mustapha A. Detection of melamine ingluten, chicken feed and processed foods using surface enhanced Ramanspectroscopy and HPLC. Journal of FoodScience, 2008, 73(8): T129―T134

doi: 10.1111/j.1750-3841.2008.00901.x
Muñiz-Valencia R, Ceballos-Magaña S, Rosales-Martinez D, Gonzalo-Lumbreras R, Santos-Montes A, Cubedo-Fernandez-Trapiella A, Izquierdo-Hornillos R. Method developmentand validation for melamine and its derivatives in rice concentratesby liquid chromatography. Application to animalfeed samples. Analytical and BioanalyticalChemistry, 2008, 392(3): 523―531

doi: 10.1007/s00216-008-2294-3
Andersen W C, Turnipseed S B, Karbiwnyk C M, Clark S B, Madson M R, Gieseker C M, Miller R A, Rummel N G, Reimschuessel R. Determination and confirmation of melamine residues in catfish, trout,tilapia, salmon, and shrimp by liquid chromatography with tandem massspectrometry. Journal of Agricultural andFood Chemistry, 2008, 56(12): 4340―4347

doi: 10.1021/jf800295z
Michael S F, Elizabeth R T, Robert H P, Linda A A, Birgit P. The determination of melamine in muscletissue by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2007, 21(24): 4027―4032

doi: 10.1002/rcm.3289
Wang Z, Pan S, Krauss T D, Du H, Rothberg L J. The structural basis forgiant enhancement enabling single-molecule Raman scattering. PNAS, 2007, 100: 8638―8643

doi: 10.1073/pnas.1133217100
Moskovits M. Surface-enhanced Raman spectroscopy: a brief perspective. Surface-enhanced Raman scattering: Physics andApplications, 2006, 103: 1―17
Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. Ultrasensitive chemical analysis by Ramanspectroscopy. Chemical Review, 1999, 99(10): 2957―76

doi: 10.1021/cr980133r
Mauer L J, Chernyshova A A, Hiatt A, Deering A, Davis R. Melamine detection in infantformula powder using near- and mid-infrared spectroscopy. Journal of Agricultural and Food Chemistry, 2009, 57(10): 3974―3980

doi: 10.1021/jf900587m
He L, Kim N J, Li H, Hu Z, Lin M. Use of a fractal-like gold nanostructurein surface enhanced Raman spectroscopy for detection of selected foodcontaminants. Journal of Agricultural andFood Chemistry, 2008, 56(21): 9843―9847

doi: 10.1021/jf801969v
Garber E A E. Detection of melamine using commercial enzyme-linked immunosorbentassay technology. Journal of Food Protection, 2008, 71(3): 590―594
Zhu L, Gamez G, Chen H, Chingin K, Zenobi R. Rapid detection of melaminein untreated milk and wheat gluten by ultrasound-assisted extractiveelectrospray ionization mass spectrometry (EESI-MS). Chemical Communications, 2009, (5): 559―561

doi: 10.1039/b818541g
Yan N, Zhou L, Zhu Z, Chen X. Determinationof melamine in dairy products, fish feed, and fish by capillary zoneelectrophoresis with diode array detection. Journal of Agricultural and Food Chemistry, 2009, 57(3): 807―811

doi: 10.1021/jf803429e
Campbell J A, Wunschel D S, Petersen C E. Analysis of melamine, cyanuric acid, ammelide, and ammelineusing matrix-assisted laser desorption ionization/time-of-flight massspectrometry (MALDI/TOFMS). AnalyticalLetters, 2007, 40(16): 3107―3118

doi: 10.1080/00032710701646131
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed