Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2009, Vol. 3 Issue (4) : 357-362    https://doi.org/10.1007/s11705-009-0245-y
Research articles
Investigation of nanostructure of konjac-based water absorbents with atomic force microscopy
Shengrong GENG1,Ruotai LIN1,Mingli CHEN1,Shaoyang LIU2,Yifen WANG2,
1.Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; 2.Biosystems Engineering Department, Auburn University, 200 Tom E. Corley Building, Auburn, AL 36849-5417, USA;
 Download: PDF(225 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Atomic force microscopy technology is gradually spreading to almost all aspects, including food science and technology, since it was first invented in 1986. In this study, this powerful instrument was applied to image nanostructures of three water absorbents—original konjac powder, konjac powder grafted with acrylic acid using 60Co γ-irradiation and regenerated grafted powder. Water absorption capacities and the rates of the three absorbents were also determined in this work. Original konjac powder could only absorb 60 times (w/w) of water, while 270 times for the grafted absorbent and 360 times for the regenerated absorbent. The initial water absorption rates in both tap and distilled water were high, but the rate decreased steeply as time elapsed. After 20min, the absorbent was close to saturated status. These physical properties were in accordance with the nanostructures of these three water absorbents.
Issue Date: 05 December 2009
 Cite this article:   
Ruotai LIN,Shengrong GENG,Mingli CHEN, et al. Investigation of nanostructure of konjac-based water absorbents with atomic force microscopy[J]. Front. Chem. Sci. Eng., 2009, 3(4): 357-362.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0245-y
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I4/357
Zhang Y Q, Xie B J, Gan X. Advance in the applications of konjac glucomannan andits derivatives. Carbohydr Polym, 2005, 60: 27―31

doi: 10.1016/j.carbpol.2004.11.003
Chen H L, Cheng H C, Liu Y J, Liu S Y, Wu W T.Konjac acts as a natural laxative by increasingstool bulk and improving colonic ecology in healthy adults. Nutrition, 2006, 22: 1112―1119

doi: 10.1016/j.nut.2006.08.009
Jia D, Fang Y, Yao K. Water vapor barrier and mechanical properties of konjacglucomannan-chitosan-soy protein isolate edible films. Food Bioprod Process, 2009, 87: 7―10

doi: 10.1016/j.fbp.2008.06.002
Kato K, Matsuda K. Studies on the chemical structureof konjac mannan. Part I. Isolation and characterizationof oligosaccharides from the partial acid hydrolyzate of the mannan. Agric Biol Chem, 1969, 33: 1446―1453
Maeda M, Shimahara H, Sugiyama N. Detailed examination of the branched structure of konjacglucomannan. Agric Biol Chem, 1980: 44, 245―252
Tian B, Dong C, Chen L. Preparation of konjac glucomannan ester of palmitic acidand its emulsification. J Appl Polym Sci, 1998, 67: 1035―1038

doi: 10.1002/(SICI)1097-4628(19980207)67:6<1035::AID-APP10>3.0.CO;2-#
Takechi K, Furuhata K. Synthesis and nucleophilicsubstitution of tosylated konjac glucomannan. SEN-I Gakkaishi, 1999, 55: 315―322
Kobayashi S, Tsujihata S, Hibi N, Tsukamoto Y. Preparationand rheological characterization of carboxymethyl konjac glucomannan. Food Hydrocolloids, 2002, 16: 289―294

doi: 10.1016/S0268-005X(01)00101-1
Yu H, Huang Y, Ying H, Xiao C. Preparationand characterization of a quaternary ammonium derivative of konjacglucomannan. Carbohydr Polym, 2007, 69: 29―40

doi: 10.1016/j.carbpol.2006.08.024
Ohya Y, Ihara K, Murata J, Sogitou T, Ouchi T. Preparation and biologicalproperties of dicarboxy-glucomannan: Enzymatic degradation and stimulatingactivity against cultured macrophages. Carbohydr Polym, 1994, 25: 123―130

doi: 10.1016/0144-8617(94)90148-1
Pang J, Li B, Xie B, Chen S, Tian S. Studies on the structure of oxidizedkonjac glucomannan. Chinese J Sturct Chem, 2004, 23: 912―917
Arvanitoyannis I S, Stratakos A, Mente E. Impact of irradiation on fish and seafood shelf life:a comprehensive review of applications and irradiation detection. Crit Rev Food Sci Nutr, 2009, 49: 68―112

doi: 10.1080/10408390701764278
Corbo M R, Bevilacqua A, Campaniello D, D'Amato D, Speranza B, Sinigaglia M. Prolonging microbial shelf life of foods through theuse of natural compounds and non-thermal approaches—a review. Int J Food Sci Technol, 2009, 44: 223―241

doi: 10.1111/j.1365-2621.2008.01883.x
Bhattacharya A. Radiationand industrial polymers. Prog Polym Sci, 2000, 25: 371―401

doi: 10.1016/S0079-6700(00)00009-5
Clough R L. High-energy radiation and polymers: a review of commercial processesand emerging applications. Nucl InstrumMethods Phys Res Sect B―Beam Interact Mater Atoms, 2001, 185: 8―33

doi: 10.1016/S0168-583X(01)00966-1
Yang H, Wang Y, Lai S, An H, Li Y, Chen F. Applicationof atomic force microscopy as a nanotechnology tool in food science. J Food Sci, 2007, 72: R65―R75

doi: 10.1111/j.1750-3841.2007.00346.x
An H, Yang H, Liu Z, Zhang Z. Effects ofheating modes and sources on nanostructure of gelatinized starch moleculesusing atomic force microscopy. LWT-FoodSci Technol, 2008, 41: 1466―1471

doi: 10.1016/j.lwt.2007.08.026
Benmouna F, Johannsmann D. Viscoelasticity of gelatinsurfaces probed by AFM noise analysis. Langmuir, 2004, 20: 188―193

doi: 10.1021/la0355794
Mohanty B, Bohidar H B. Microscopic structure ofgelatin coacervates. Int J Biol Macromol, 2005, 36: 39―46

doi: 10.1016/j.ijbiomac.2005.03.012
Yang H, Wang Y, Regenstein J, Rouse D. Nanostructuralcharacterization of catfish skin gelatin using atomic force microscopy. J Food Sci, 2007, 72: C430―C440

doi: 10.1111/j.1750-3841.2007.00480.x
Yang H, Wang Y, Regenstein J, Zhou P. Effects ofalkaline and acid pretreatment on the physical properties and nanostructureof channel catfish skin gelatin. Food Hydrocolloids, 2008, 22: 1541―1550

doi: 10.1016/j.foodhyd.2007.10.007
Wang Y, Yang H, Regenstein J M. Characterization of fish gelatin at nanoscale using atomicforce microscopy. Food Biophys, 2008, 3: 269―272

doi: 10.1007/s11483-008-9083-6
Yang H, Wang Y. Effects of concentrationon nanostructural images and physical properties of gelatin. Food Hydrocolloids, 2009, 23: 577―584

doi: 10.1016/j.foodhyd.2008.04.016
Van der Aa B C, Aather M, Dufrene Y F. Surface properties of Aspergillus oryzae spores investigatedby atomic force microscopy. Colloid SurfB―Biointerfaces, 2002, 24: 277―284

doi: 10.1016/S0927-7765(01)00277-6
Brehm-Stecher B F, Johnson E A. Single-cell microbiology:tools, technologies, and applications. Microbiol Mol Biol Rev, 2004, 68: 538―559

doi: 10.1128/MMBR.68.3.538-559.2004
Sullivan C J, Morrell J L, Allison D P, Doktycz M J. Mounting of Escherichia coli spheroplasts for AFM imaging. Ultramicroscopy, 2005, 105: 96―102

doi: 10.1016/j.ultramic.2005.06.023
McLandsborough L, Rodriguez A, Perez-Conesa D, Weiss J. Biofilms: atthe interface between biophysics and microbiology. Food Biophys, 2006, 1: 94―114

doi: 10.1007/s11483-005-9004-x
Wright C J, Armstrong I. The application of atomicforce microscopy force measurements to the characterisation of microbialsurfaces. Surf Interface Anal, 2006, 38: 1419―1428

doi: 10.1002/sia.2506
Yang H, Wang Y. Application of atomic forcemicroscopy on rapid determination of microorganisms for food safety. J Food Sci, 2008, 73: N44―N50
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed