Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2009, Vol. 3 Issue (4) : 351-356    https://doi.org/10.1007/s11705-009-0248-8
Research articles
Statistical modeling and optimization for enhanced hyaluronic acid production by batch culture of Sreptococcus zooepidemicus via the supplement of uracil
Long LIU1,Haiquan YANG1,Guocheng DU1,Miao WANG2,Jian CHEN3,
1.School of Biotechnology, Jiangnan University, Wuxi 214122, China;Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; 2.School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; 3.Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China;State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
 Download: PDF(187 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This work is aimed to achieve the optimal hyaluronic acid (HA) production by batch culture of Streptococcus zooepidemicus via the supplement of nucleotide bases using response surface methodology (RSM). First, the influence of nucleotide bases (adenine, guanine, cytosine, thymine, and uracil) on microbial HA production was investigated using fractional factorial design (FFD). By a 25−2 FFD, uracil was found to be the most significant factor for cell growth and HA production, while the other nucleotide bases were shown to have no significant effects on cell growth and HA production. Also, the impact of uracil on cell growth and HA production was further investigated by RSM, where two variables were considered: uracil concentration and supplement time. The optimal uracil concentration and supplement time were found to be 0.051g/L and 7h, respectively, and the predicted maximal HA production reached 6.42g/L. The maximal HA production increased from 5.0g/L of the control without uracil supplement to 6.31g/L at the optimal conditions in validation experiments.
Issue Date: 05 December 2009
 Cite this article:   
Haiquan YANG,Long LIU,Guocheng DU, et al. Statistical modeling and optimization for enhanced hyaluronic acid production by batch culture of Sreptococcus zooepidemicus via the supplement of uracil[J]. Front. Chem. Sci. Eng., 2009, 3(4): 351-356.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0248-8
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I4/351
Fong Chong B, Blank L M, Mclaughlin R, Nielsen L K. Microbial hyaluronic acid production. Appl Microbiol Biotechnol, 2005, 66: 341―351

doi: 10.1007/s00253-004-1774-4
Laurent T C, Laurent U B, Fraser J R. The structure and function of hyaluronan: an overview. Immunol Cell Biol, 1996, 74: 1―7

doi: 10.1038/icb.1996.32
Peyron J G. A new approach to the treatment of osteoarthritis: viscosupplementation. Osteoarthr Cartilage, 1993, 1: 85―87

doi: 10.1016/S1063-4584(05)80022-6
Morra M. Engineeringof biomaterials surfaces by hyaluronan. Biomacromolecules, 2005, 6: 1205―1223

doi: 10.1021/bm049346i
Duan X J, Yang L, Zhang X, Tan W S. Effect ofshear stress and oxygen on molecular weight of hyaluronic acid producedby Streptococcus zooepidemicus. J Microbiol Biotechnol, 2008, 18: 718―724
Hasegawa S, Nagatsuru M, Shibutani M, Yamamoto S, Hasebe S. Productivity of concentratedhyaluronic acid using maxblend fermentor. J Biosci Bioeng, 1999, 88: 68―71

doi: 10.1016/S1389-1723(99)80178-9
Zhang J Y, Hao N, Chen G Q. Effect of expressing polyhydroxybutyrate synthesis genes(phbCAB) in streptococcus zooepidemicus on production of lactic acidand hyaluronic acid. Appl Microbiol Biotechnol, 2006, 71: 221―227

doi: 10.1007/s00253-005-0164-x
Huang W C, Chen S J, Chen T L. The role of dissolved oxygen and function of agitationin hyaluronic acid fermentation. BiochemEng J, 2006, 32: 239―243

doi: 10.1016/j.bej.2006.10.011
Huang W C, Chen S J, Chen T L. Production of hyaluronic acid by repeated batch fermentation. Biochem Eng J, 2008, 40: 460―464

doi: 10.1016/j.bej.2008.01.021
Gao H J, Du G C, Chen J. Analysis of metabolic fluxes for hyaluronic acid (HA)production by Streptococcus zooepidemicus. World J Microbiol Biotechnol, 2006, 22: 399―408

doi: 10.1007/s11274-005-9047-7
Kim S J, Park S Y, Kim C W. A novel approach to the production of hyaluronic acidby Streptococcus zooepidemicus. J Microbiol Biotechnol, 2006, 16: 1849―1855
Liu L, Wang M, Du G C, Chen J, Sun J. Influence of culture modes on the microbialproduction of hyaluronic acid by Streptococcuszooepidemicus. Biotechnol BioprocE, 2008, 13: 269―273

doi: 10.1007/s12257-007-0193-7
Liu L, Wang M, Du G C, Chen J, Sun J. Enhanced hyaluronic acid production bya two-stage culture strategy based on the modeling of batch and fed-batchcultivation of Streptococcus zooepidemicus. Bioresour Technol, 2008, 99: 8532―8536

doi: 10.1016/j.biortech.2008.02.035
Bitter T, Muir H M. A modified uronic acid carbazolereaction. Anal Biochem, 1962, 4: 330―334

doi: 10.1016/0003-2697(62)90095-7
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed