Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2009, Vol. 3 Issue (4) : 407-412    https://doi.org/10.1007/s11705-009-0255-9
Research articles
Effects of fatty acid chain length and degree of unsaturation on the surface activities of monoacyl trehaloses
Yue-E SUN,Wenshui XIA,Xueyan TANG,Zhiyong HE,Jie CHEN,
State Key Laboratory of Food Science and Technology, Jiangnan University 1800, Lihu Road, Wuxi 214122, China;
 Download: PDF(137 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The surface properties of monoacyl trehaloses with different acyl chains were investigated at 30°C, 40°C, 50°C, and 60°C. Monoacyl trehaloses were enzymatically synthesized and purified with silica gel column chromatography and semi-preparative high-performance liquid chromatography (HPLC), and the purity of products was identified by mass spectrometry (MS) and nuclear magnetic resonance (NMR). The surface tension of monoacyl trehalose in pure water was measured using Doüy ring method at different temperatures. The critical micelle concentrations (CMC), surface tension at the CMC, γCMC, and residual area per molecule, a, were estimated from the curves. The CMC value of unsaturated monoacyl trehalose was affected by both the degree of unsaturation and the acyl chain length, and the effect of chain length on the CMC value was much stronger than that of the unsaturation degree. However, there was no significant dependency of the γCMC value and a values on the chain length or the unsaturated degree.
Issue Date: 05 December 2009
 Cite this article:   
Wenshui XIA,Yue-E SUN,Xueyan TANG, et al. Effects of fatty acid chain length and degree of unsaturation on the surface activities of monoacyl trehaloses[J]. Front. Chem. Sci. Eng., 2009, 3(4): 407-412.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0255-9
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I4/407
Ferrer M, Comelles F, Plou F J, Cruces M A, Fuentes G, Parra J. Comparative surface activities of di- and trisaccharide. Langmuir, 2002, 18: 667―673

doi: 10.1021/la010727g
Chen J, Kimura Y, Adachi S. Synthesis of linoleoyl disaccharides through lipase-catalyzedcondensation and their surface activities. J Biosci Bioeng, 2005, 100: 274―279

doi: 10.1263/jbb.100.274
Salentinig S, Yaghmur A, Guillot S, Glatter O. Preparationof highly concentrated nanostructured dispersions of controlled size. J Colloid Interf Sci, 2008, 326: 211―220

doi: 10.1016/j.jcis.2008.07.021
Sola A, Rodríguez S, García Gancedo A, Vilas P, Gil-Fernández C. Inactivationand inhibition of African swine fever virus by monoolein, monolinolein,and γ-linolenyl alcohol. Arch Virol, 1986, 88: 285―292

doi: 10.1007/BF01310882
Milošević I, Mauroy V, Dabboue H, Serieye S, Warmont F, Salvetat J P, Saboungi M J, Guillot S. Synthesisand size control of polystyrene nanoparticles via “liquid crystalline”nanoemulsion. Microporous and MesoporousMaterials, 2008, 10: 032
Karboune S, St-Louis R, Kermasha S. Enzymatic synthesis of structured phenolic lipids byacidolysis of flaxseed oil with selected phenolic acids. J Mol Catal B: Enzym, 2008, 52―53: 96―105

doi: 10.1016/j.molcatb.2007.10.015
Din J N, Newby D E, Flapan A D. Omega 3 fatty acids and cardiovascular disease—fishingfor a natural treatment. Brit Med J, 2004, 328: 30―35

doi: 10.1136/bmj.328.7430.30
McEntee M F, Ziegler C, Reel D, Tomer K, Shoieb A, Ray M, Li X, Neilsen N, Lih F B, ORourke D, Whelan J. Dietary n−3 polyunsaturated fatty acids enhancehormone ablation therapy in androgen-dependent prostate cancer. Am J Pathol, 2008, 173: 229―241

doi: 10.2353/ajpath.2008.070989
Spiteller G. Peroxylradicals: inductors of neurodegenerative and other inflammatory diseases.Their origin and how they transform cholesterol, phospholipids, plasmalogens,polyunsaturated fatty acids, sugars, and proteins into deleteriousproducts. Free Radical Bio Med, 2006, 41: 11―12

doi: 10.1016/j.freeradbiomed.2006.03.013
Willemsen L W M, Koetsier M, Balvers M, Beermann C, Stahl B, Van T E A. Polyunsaturated fatty acids support epithelial barrierintegrity and reduce IL-4 mediated permeability in vitro. Eur J Nutr, 2008, 47: 183―191

doi: 10.1007/s00394-008-0712-0
Shaikh S R, Edidin M. Polyunsaturated fatty acidsand membrane organization: elucidating mechanisms to balance immunotherapyand susceptibility to infection. Chem PhysLipids, 2008, 153: 24―33

doi: 10.1016/j.chemphyslip.2008.02.008
Richardson A. Long-chainpolyunsaturated fatty acids in childhood developmental and psychiatricdisorders. Lipids, 2004, 39: 1215―1222

doi: 10.1007/s11745-004-1350-z
Devulapalle K S, Gomez S A, Ferrer M, Alcalde M, Mooser G, Plou F J. Effect of carbohydrate fatty acid esters on Streptococcussobrinus and glucosyltransferase activity. Carbohyd Res, 2004, 339: 1029―1034

doi: 10.1016/j.carres.2004.01.007
Miyashita K. Polyunsaturatedlipids in aqueous systems do not follow our perceptions of oxidativestability. Lipid Technol Newsl, 2002, 8: 35―41
Miyashita K, Tateda N, Ota T. Oxidative stability of polyunsaturated fatty acids inan aqueous solution. Fisheries Science (Japan), 1993, 57: 1638―1640
Chen J, Kimura Y, Adachi S. Continuous synthesis of 6-O-linoleoyl hexose using apacked-bed reactor system with immobilized lipase. Biochemical Engineering Journal, 2005, 22: 145―149

doi: 10.1016/j.bej.2004.09.010
Griffin W C. Hydrophilic-lipophilic balance. J SocCosmet Chem, 1949, 1: 311―326
Soultani S, Ognier S, Engasser J M, Ghoul M. Comparativestudy of some surface active properties of fructose esters and commercialsucrose esters. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2003, 227: 35―44

doi: 10.1016/S0927-7757(03)00360-1
Bancroft W. Thetheory of emulsification, VI. J Phys Chem, 1915
Drummond C J, Wells D. Nonionic lactose and lactitolbased surfactants: comparison of some physico-chemical properties. Colloids and Surfaces A: Physicochemical and EngineeringAspects, 1998, 141: 131―142

doi: 10.1016/S0927-7757(98)00209-X
Ducret A, Giroux A, Trani M, Lortie R. Characterizationof enzymatically prepared biosurfactants. J Am Oil Chem Soc, 1996, 73: 109―113

doi: 10.1007/BF02523456
Kitahata A, Tamai Y, Hayano S, Hara I. Surfactants:property, application and chemical ecology, 1979
Chen J, Kimura Y, Adachi S. Surface activities of monoacyl trehaloses in aqueoussolution. LWT-Food Science and Technology, 2007, 40: 412―417

doi: 10.1016/j.lwt.2005.11.006
Rose M J. Surfactants and Interfacial Phenomena. New York: Wiley-Interscience, 2004

doi: 10.1002/0471670561
Lauffer M A. The nature of entropy-driven processes. In entropy-driven processes in biology. Heiderberg: Springer, 1975, 1―20
Watanabe Y, Miyawaki Y, Adachi S, Nakanishi K, Matsuno R. Continuous production ofacyl mannose by immobilized lipase using a packed-bed reactor andtheir surfactant properties. BiochemicalEngineering Journal, 2001, 8: 213―216

doi: 10.1016/S1369-703X(01)00099-7
Garofalakis G, Murray B S, Sarney D B. Surface activity and critical aggregation concentrationof pure sugar ester with different sugar headgroups. J Colloid Interf Sci, 2000, 229(2): 391―398

doi: 10.1006/jcis.2000.7035
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed