Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (1) : 26-34    https://doi.org/10.1007/s11705-010-0531-8
RESEARCH ARTICLE
Performance and synergistic effect of phenolic and thio antioxidants in ABS graft copolymers
Gongsheng LI1(), Xuhong GUO1, Wang NA2, Diancheng HAO3, Mingyao ZHANG4, Huixuan ZHANG4,5, Jun XU1
1. School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; 2. Calcium Carbide Factory of Jilin Petrochemical Co. Ltd, Petrochina, Jilin 132022, China; 3. Polyethylene Factory of Jilin Petrochemical Co. Ltd, Petrochina, Jilin 132022, China; 4. Institute of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; 5. Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130012, China
 Download: PDF(314 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The synergistic effect of phenolic and thio antioxidants on the stabilization of acrylonitrile-butadiene-styrene (ABS) graft copolymers has been studied. Three commercial antioxidants Irganox245, Irganox1076 and dilauryl thiodipropionate (DLTP) were selected. Formulations based on hindered phenols and secondary antioxidant DLTP were prepared. Stabilization was monitored in terms of changes in the functional groups (oxidation products), tensile properties and yellowness index. Differential scanning calorimetry (DSC) and thermogravimetry (TG) were also used to assess the stability. The results indicated that the combination of Irganox245 and DLTP showed much better stabilization effect than the individual components due to the strong synergistic effect. Only weak synergism could be observed in the formulation that contained Irganox1076 and DLTP. Irganox1076 and Irgnox1076/DLTP exhibited similar behaviors between antioxidants with the highest and lowest efficiencies.

Keywords antioxidant      ABS graft copolymers      synergistic effect     
Corresponding Author(s): LI Gongsheng,Email:jh_lgsh@petrochina.com.cn   
Issue Date: 05 March 2011
 Cite this article:   
Gongsheng LI,Xuhong GUO,Wang NA, et al. Performance and synergistic effect of phenolic and thio antioxidants in ABS graft copolymers[J]. Front Chem Sci Eng, 2011, 5(1): 26-34.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-010-0531-8
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I1/26
antioxidantchemistry namemolecular weightmelting point /°C
Irganox1076n-octadecyl-β-(4-hydroxy-3,5-di-tert-butyl-phenyl) propionate530.950-55
Irganox245triethylene glycol bis-3(3-tert-butyl-4-hydroxy-5-methylphenyl) propionate586.876-79
DLTPdilauryl thiodipropionate514.939-40
Tab.1  Properties of the antioxidants studied
symbolantioxidant /partsfatty acid soap /partssilicon oil /partscontent of antioxidant in the polymer /(w·w-1%)
1Irganox1076= 503040.675
2Irgnox245= 503040.675
3DLTP= 503040.675
4Irganox1076/DLTP= 16.7/33.33040.675
5Irgnox245/DLTP= 16.7/33.33040.675
Tab.2  The prescription of the antioxidant emulsion and content of antioxidant in ABS polymers
Fig.1  Dynamic DSC curves of ABS graft copolymers stabilized with different antioxidants in oxygen
Fig.2  Isothermal DSC curves of ABS graft copolymers stabilized with different antioxidants in oxygen at 180°C
antioxidantoxidation induction time /minSA /%
no antioxidant3
Irganox24510
Irganox107625
DLTP16
Irganox1076/DLTP2637.27
Irganox245/DLTP64351.64
Tab.3  The synergistic effects of antioxidant formulations in ABS graft copolymers
Fig.3  TG curves of unstabilized ABS graft copolymers in air and nitrogen
antioxidantonset temperature /°Cmaximum temperature /°Cpercentage of weight gain /%
no antioxidant1852112.80
Irganox2451932142.16
DLTP2022191.41
Irganox10762052261.58
Irganox1076/DLTP2052261.32
Irganox245/DLTP2132321.11
Tab.4  Temperature of the onset and maximum of thermal weight gain of ABS graft copolymers stabilized with different antioxidants
Fig.4  The FTIR spectrum of ABS graft copolymers contained Irganox1076 aging at different temperatures
Fig.5  The dependence of the carbonyl index of ABS graft copolymers stabilized with different types of antioxidants on temperatures of oven aging
Fig.6  The dependence of the hydroxyl index of ABS graft copolymers stabilized with different types of antioxidants on temperatures of oven aging
Fig.7  The dependence of the elongation at break of ABS graft copolymers stabilized with different types of antioxidants on temperatures of oven aging
Fig.8  The forming of colored product
Fig.9  The dependence of the yellowness index of ABS graft copolymers stabilized with different types of antioxidants on temperatures of oven aging
1 Tiganis B E, Burn L S, Davis P, Hill A J. Thermal degradation of acrylonitrile-butadiene-styrene (ABS) blends. Polym Degrad Stab , 2002, 76 (3): 425–434
doi: 10.1016/S0141-3910(02)00045-9
2 Boldizar A, M?ller K. Degradation of ABS during repeated processing and accelerated aging. Polym Degrad Stab , 2003, 81 (2): 359–336
doi: 10.1016/S0141-3910(03)00107-1
3 Scott G, Tahan M. Comparison of the photo-oxidative behaviour of some polybutadiene-based polyblends. European Polym J , 1977, 13(12): 981–987
doi: 10.1016/0014-3057(77)90170-7
4 Shimada J. The mechanism of oxidative degradation of ABS resin. Part 1. The mechanism of thermooxidative degradation. J Appl Polym Sci, 1968, 12(4): 655–669
doi: 10.1002/app.1968.070120405
5 Suzuki M, Charles A W. The thermal degradation of acrylonitrile-butadiene-styrene terpolymer as studied by TGA/FTIR. Polym Degrad Stab , 1995, 47(2): 217–221
doi: 10.1016/0141-3910(94)00122-O
6 Adediyi J B. Clarification and discussion of chemical transformations involved in thermal and photo-oxidative degradation of ABS. European Polym J , 1984, 20(3): 291–299
doi: 10.1016/0014-3057(84)90050-8
7 Vulic I, Vitarelli G, Zenner J M. Structure-property relationships: phenolic antioxidants with high efficiency and low colour contribution. Polym Degrad Stab , 2002, 78(1): 27–34
doi: 10.1016/S0141-3910(02)00115-5
8 Pe?a J M, Allen N S, Edge M, Liauw C M, Valange B. Studies of synergism between carbon black and stabilizers in LDPE photodegradation. Polym Degrad Stab , 2001, 72(2): 259–270
doi: 10.1016/S0141-3910(01)00033-7
9 Allen N S, Barcelona A, Edge M, Wilkinson A, Merchan C G. Aspects of the thermal and photostabilisation of high styrene-butadiene copolymer (SBC). Polym Degrad Stab , 2006, 91(6): 1395–1416
doi: 10.1016/j.polymdegradstab.2005.07.016
10 Shanks D, Al-Maharik N, Malmstr?m J, Engman L, Eriksson P, Stenberg B, Reitberger T. Improved antioxidant formulations for polymeric materials-synergistic protective effects in combinations of organotellurium compounds with conventional phenolic antioxidants or thiols. Polym Degrad Stab , 2003, 81(2): 261–271
doi: 10.1016/S0141-3910(03)00096-X
11 Alariqi S A S, Kumar A P, Rao B S M, Singh R P. Stabilization of γ-sterilized biomedical polyolefins by synergistic mixtures of oligomeric stabilizers. Part II. Polypropylene matrix. Polym Degrad Stab , 2007, 92(2): 299–309
doi: 10.1016/j.polymdegradstab.2006.10.010
12 Kolawole E G. Thermal and photooxidation of polyolefins in the presence of 3,5-ditertiarybutyl-4-hydroxybenzyl thioglycollate, zinc diethyldithio carbamate, and irganox 1076. J Appl Polym Sci , 1982, 27(9): 3437–3448
doi: 10.1002/app.1982.070270920
13 Shanina E L, Konradov A A, Zaikov G E. Synergy effects in binary and ternary mixtures of inhibitors in polypropylene autooxidation. Polym Degrad Stab , 1999, 63(2): 177–181
doi: 10.1016/S0141-3910(98)00081-0
14 Jonge C, Maeden F, Biemond M, Huysmans W, Mijs W J. Antioxidative properties of phenyl-substituted phenols. III. Model studies of synergistic actions between primary and secondary antioxidants. J Polymer SCI , 1976, 57(1): 197–204
15 Billmeyer F W, Sultzman, eds. Principles of Colour Technol. New York: Interscience, 1966, 38
16 Rosík L, Ková?ová J, Pospí?il J. Lifetime prediction of ABS polymers based on thermoanalytical data. Journal of Thermal Analysis and Calorimetry , 1996, 46(2): 465–470
doi: 10.1007/BF02135023
17 Bauer I, Habicher W D, Rautenberg C, Al-Malaika S. Antioxidant interaction between organic phosphites and hindered amine light stabilisers during processing and thermoxidation of polypropylene. Polym Degrad Stab , 1995, 48(3): 427–440
doi: 10.1016/0141-3910(95)00104-T
18 Blom H, Yeh R, Wojnarowski R, Ling M. Detection of degradation of ABS materials by DSC. Journal of Thermal Analysis and Calorimetry , 2006, 83(1): 113–115
doi: 10.1007/s10973-005-6977-0
19 F?ldes E, Lohmeijer J. Polymer/additive compatibility: study of primary antioxidants in PBD. J Appl Polym Sci , 1997, 65(4): 761–775
doi: 10.1002/(SICI)1097-4628(19970725)65:4<761::AID-APP14>3.0.CO;2-W
20 Zweifel H, editor. Stabilization of Polymeric Materials. Berlin: Springer-Verlag, 1998
21 Al-Malaika S, Goodwin C, Issenhuth S, Burdick D. The antioxidant role of α-tocopherol in polymers II. Melt stabilising effect in polypropylene. Polym Degrad Stab , 1999, 64(1): 145–156
doi: 10.1016/S0141-3910(98)00187-6
22 Alariqi S A S, Kumar AP, Rao B S M, Tevtia A K, Singh R P. Stabilization of γ-sterilized biomedical polyolefins by synergistic mixtures of oligomeric stabilizers. Polym Degrad Stab , 2006, 91(10): 2451–2464
doi: 10.1016/j.polymdegradstab.2006.03.010
23 Roger C L, Norman B C, Kenneth G T, eds. Polymer durability degradation, stabilization, and lifetime prediction. Roger C L, Norman B C, Kenneth G T, eds. Advances in Chemistry Series . Washington DC: American Chemical Society, 1996, 359–374
24 F?ldes E, Lohmeijer J. Relationship between chemical structure and performance of primary antioxidants in PBD. Polym Degrad Stab , 1999, 66(1): 31–39
doi: 10.1016/S0141-3910(99)00049-X
25 Scott G. Atmospheric Oxidation and Antioxidants. Elsevier : 1965
26 Yachigo S, Sasaki M, Kojim F. Studies on polymer stabilizers. Part II. A new concept of a synergistic mechanism between phenolic and thiopropionate type antio xidants. Polym Degrad Stab , 1992, 35(2): 105–113
doi: 10.1016/0141-3910(92)90100-J
[1] Yueqing Wang, Jintao Zhang. Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(4): 838-854.
[2] Sunhui Chen,Qiuling Liang,Shuping Xie,Ergang Liu,Zhili Yu,Lu Sun,Meong Cheol Shin,Seung Jin Lee,Huining He,Victor C. Yang. Curcumin based combination therapy for anti-breast cancer: from in vitro drug screening to in vivo efficacy evaluation[J]. Front. Chem. Sci. Eng., 2016, 10(3): 383-388.
[3] Xiaohong Kou,Lihua Han,Xingyuan Li,Zhaohui Xue,Fengjuan Zhou. Antioxidant and antitumor effects and immunomodulatory activities of crude and purified polyphenol extract from blueberries[J]. Front. Chem. Sci. Eng., 2016, 10(1): 108-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed