Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (1) : 55-59    https://doi.org/10.1007/s11705-010-0537-2
RESEARCH ARTICLE
Synthesis and characterization of norfloxacin biomonomer
Shengxiong DONG1,2,3(), Qiaoping CHEN1, Hongfang XIE1, Jianhua HUANG1,2,3
1. Department of Chemistry and Environmental Science, Ningde normal University, Ningde 352100, China; 2. College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350108, China; 3. Fujian Provincial Key Laboratory of Polymer Materials, Fuzhou University, Fuzhou 350108, China
 Download: PDF(227 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel drug agent named norfloxacin biomonomer was developed in order to solve the problem of low drug content, uneven drug distribution, low molecular weight, and wide molecular weight distribution of polymer drug, based on polyurethane, which was used as an antibacterial agent to control the bacterial infection associated with biofilm formation on polymeric materials used in biologic environments. In this research, norfloxacin biomonomer was synthesized by esterifying the compound of norfloxacin. High-performance liquid chromatography system was used to analyze the purity of the final product and intermediate products, and Fourier transform infrared spectrometer and mass spectrum were used to verify the final product and intermediate products. The results showed that the objective product was developed successfully. The final product of norfloxacin biomonomer could be incorporated into the polyurethane as chain extender.

Keywords norfloxacin      biomonomer      synthesis      characterization     
Corresponding Author(s): DONG Shengxiong,Email:sxdong2004@126.com   
Issue Date: 05 March 2011
 Cite this article:   
Shengxiong DONG,Qiaoping CHEN,Hongfang XIE, et al. Synthesis and characterization of norfloxacin biomonomer[J]. Front Chem Sci Eng, 2011, 5(1): 55-59.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-010-0537-2
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I1/55
Fig.1  
Fig.2  
Fig.3  
Fig.4  HPLC result of NF
Fig.5  HPLC result of NF1
Fig.6  HPLC result of NF2
Fig.7  HPLC result of NFB
Fig.8  FTIR spectra of NF, NF1, NF2, NFB
samplemolecular weight /(m/z)[M+ 1]+ /(m/z)[M+ 23]+ /(m/z)[2M+ 23]+ /(m/z)impurities /(m/z)
NF319.3320.3342.3661.2
NF1561.6562.5584.51145.4274.4, 663.3
NF21237.41259.8576.4, 694.5
NFB752.8753.4775.4452.2
Tab.1  The MS results of NF, NF1, NF2, and NFB
Fig.9  MS spectra of NFB
Fig.10  
1 Jansen B, Peters G. Modern strategies in the prevention of polymer-associated infections. Journal of Hospital Infection , 1991, 19(2): 83-88
doi: 10.1016/0195-6701(91)90100-M
2 Shummugaperumal T, Narayanan V, Annick L. The potential of lipid-and polymer-based drug delivery carriers for eradicating biofilm consortia on device-related nosocomial infections. Journal of Controlled Release , 2008, 1: 2-22
3 Robert F P. Infection in ventricular assist devices: the role of biofilm. Cardiovascular Pathology , 2006, 5: 264-270
4 Lakshmi S N, Cato R L. Biodegradable polymers as biomaterials. Progress in Polymer Science , 2007, 8: 762-798
5 Yang M L, Santerre J P. Utilization of quinolone drugs as monomers: characterization of the synthesis reaction products for poly(norfloxacin diisocyanatododecane polycaprolactone). Biomacromolecules , 2001, 2(1): 134-141
doi: 10.1021/bm000087g
6 Connie S K, Wan C X, Sara H, James D B, Thomas A H, Buddy D R. Design of infection-resistant antibiotic-releasing polymers. I. Fabrication and formulation. Journal of Controlled Release , 1999, 3: 289-299
7 Woo G L Y, Mittelman M W, Santerre J P. Synthesis and characterization of a novel biodegradable antimicrobial polymer. Biomaterials , 2000, 21(12): 1235-1246
doi: 10.1016/S0142-9612(00)00003-X
8 Paul S J, Li M U S. Patent, 20050255079Al
9 Jiang X, Li J H, Ding M M, Tan H, Ling Q Y, Zhong Y P, Fu Q. Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(?-caprolactone) and poly(ethylene glycol) as soft segment. European Polymer Journal , 2007, 43(5): 1838-1846
doi: 10.1016/j.eurpolymj.2007.02.029
10 Mehkam M, Nasser S S. Preparation of new biodegradable polyurethanes as a therapeutic agent. Polymer Degradation & Stability , 2003, 80(2): 199-202
doi: 10.1016/S0141-3910(02)00388-9
[1] Faraz Montazersadgh, Hao Zhang, Anas Alkayal, Benjamin Buckley, Ben W. Kolosz, Bing Xu, Jin Xuan. Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2[J]. Front. Chem. Sci. Eng., 2021, 15(1): 208-219.
[2] Jiang-Wei Shen, Xue Cai, Bao-Juan Dou, Feng-Yu Qi, Xiao-Jian Zhang, Zhi-Qiang Liu, Yu-Guo Zheng. Expression and characterization of a CALB-type lipase from Sporisorium reilianum SRZ2 and its potential in short-chain flavor ester synthesis[J]. Front. Chem. Sci. Eng., 2020, 14(5): 868-879.
[3] Yifei Wang, Shouying Huang, Xinsheng Teng, Hongyu Wang, Jian Wang, Qiao Zhao, Yue Wang, Xinbin Ma. Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time[J]. Front. Chem. Sci. Eng., 2020, 14(5): 802-812.
[4] Feichao Wu, Yanling Wang, Xiongfu Zhang. Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water[J]. Front. Chem. Sci. Eng., 2020, 14(4): 651-660.
[5] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[6] Rongxin Zhang, Peinan Zhong, Hamidreza Arandiyan, Yanan Guan, Jinmin Liu, Na Wang, Yilai Jiao, Xiaolei Fan. Using ultrasound to improve the sequential post-synthesis modification method for making mesoporous Y zeolites[J]. Front. Chem. Sci. Eng., 2020, 14(2): 275-287.
[7] Zhaoqi Ye, Hongbin Zhang, Yahong Zhang, Yi Tang. Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties[J]. Front. Chem. Sci. Eng., 2020, 14(2): 143-158.
[8] Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
[9] Bin Xu, Toshiro Kaneko, Toshiaki Kato. Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse plasma CVD[J]. Front. Chem. Sci. Eng., 2019, 13(3): 485-492.
[10] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[11] Long Cheng, Ruirui Zhang, Hongke Wu, Xinghai Liu, Tianming Xu. The synthesis of 6-(tert-butyl)-8-fluoro-2,3-dimethylquinoline carbonate derivatives and their antifungal activity against Pyricularia oryzae[J]. Front. Chem. Sci. Eng., 2019, 13(2): 369-376.
[12] Marcela Achimovičová, Erika Dutková, Erika Tóthová, Zdenka Bujňáková, Jaroslav Briančin, Satoshi Kitazono. Structural and optical properties of nanostructured copper sulfide semiconductor synthesized in an industrial mill[J]. Front. Chem. Sci. Eng., 2019, 13(1): 164-170.
[13] Wen Zhao, Jiahua Xing, Tianming Xu, Weili Peng, Xinghai Liu. Synthesis and in vivo nematocidal evaluation of novel 3-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives[J]. Front. Chem. Sci. Eng., 2017, 11(3): 363-368.
[14] Xuan Wang, Daneel Geysen, Tom Van Gerven, Peter T. Jones, Bart Blanpain, Muxing Guo. Characterization of landfilled stainless steel slags in view of metal recovery[J]. Front. Chem. Sci. Eng., 2017, 11(3): 353-362.
[15] Lidan Ye,Xiaomei Lv,Hongwei Yu. Assembly of biosynthetic pathways in Saccharomyces cerevisiae using a marker recyclable integrative plasmid toolbox[J]. Front. Chem. Sci. Eng., 2017, 11(1): 126-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed