Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (1) : 107-112    https://doi.org/10.1007/s11705-010-0539-0
RESEARCH ARTICLE
Study on extraction of thiophene from model gasoline with br?nsted acidic ionic liquids
Xiaomeng WANG1, Mingjuan HAN2, Hui WAN1, Cao YANG1, Guofeng GUAN1()
1. College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China; 2. College of Sciences, Nanjing University of Technology, Nanjing 210009, China
 Download: PDF(275 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Br?nsted acidic ionic liquids (ILs), N-methylimidazole hydrogen sulfate ([HMIm]HSO4) and N-methylpyrrolidone hydrogen sulfate ([HNMP]HSO4), are synthesized and employed as extractants to extract thiophene from model gasoline (thiophene dissolved in n-octane). The effect of extraction temperature, extraction time and volume ratio of ILs to model gasoline on desulfurization rates is investigated. Then, the optimal desulfurization conditions are obtained: the ratio of ILs to model gasoline is 1∶1, extraction temperature is 50°C for [HMIm]HSO4 and 60°C for [HNMP]HSO4, extraction time is 60 min. Meanwhile, the desulfurization rate of [HNMP]HSO4 for model gasoline is 62.8%, which is higher than that of [HMIm]HSO4 (55.5%) under optimal conditions. The reason is discussed on the basis of the interaction energy between thiophene and ILs at the B3LYP/6-311++ G(d,p) level. Furthermore, the total desulfurization rate of [HNMP]HSO4 and [HMIm]HSO4 reaches 96.4% and 94.4%, respectively, by multistage extraction. Finally, the used ILs can be reused by vacuum drying, and their desulfurization rates are not significantly decreased after recycling 7 times in single-stage desulfurization.

Keywords br?nsted ionic liquids      model gasoline      thiophene      extraction      density functional theory     
Corresponding Author(s): GUAN Guofeng,Email:guangf@njut.edu.cn   
Issue Date: 05 March 2011
 Cite this article:   
Xiaomeng WANG,Hui WAN,Cao YANG, et al. Study on extraction of thiophene from model gasoline with br?nsted acidic ionic liquids[J]. Front Chem Sci Eng, 2011, 5(1): 107-112.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-010-0539-0
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I1/107
Fig.1  Chemical structures of the br?nsted acidic ILs: (a) -methyl-imidazole hydrogen sulfate ([HMIm]HSO) and (b) -methyl-pyrrolidone hydrogen sulfate ([HNMP]HSO)
Fig.2  Effects of volume ratios of ILs to model gasoline on desulfurization rates at the optimized conditions for [HMIm]HSO: extraction temperature, 50°C; extraction time, 60 min; [HNMP]HSO: temperature 60°C; extraction time, 60 min
Fig.3  Optimized structures of thiophene (a), [HMIm] (b) and [HNMP] (c)
Fig.4  Optimized structures of T-[HMIm] (a) and T-[HNMP] (b)
Fig.5  Effects of extraction time and temperature on the desulfurization rates of [HMIm]HSO when the volume ratio of IL to model gasoline is 1∶1
Fig.6  Effects of extraction time and temperature on the desulfurization rates with [HNMP]HSO when the volume ratio of IL to model gasoline is 1∶1
Fig.7  Deep desulfurization properties of ILs
Fig.8  Recycling of two ILs
1 Zhu W S, Li H M, Jiang X, Yan Y S, Lu J D, Xia J X. Oxidative desulfurization of fuels catalyzed by peroxotungsten and peroxomolybdenum complexes in ionic liquids. Energy & Fuels , 2007, 21(5): 2514–2516
doi: 10.1021/ef700310r
2 Hernández-Maldonado A J, Yang R T. Desulfurization of diesel fuels by adsorption via π-complexation with vapor-phase exchanged Cu(I)-Y zeolites. Journal of the American Chemical Society , 2004, 126(4): 992–993
doi: 10.1021/ja039304m
3 Shan G B, Xing J M, Zhang H Y, Liu H Z. Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Applied and Environmental Microbiology , 2005, 71(8): 4497–4502
doi: 10.1128/AEM.71.8.4497-4502.2005
4 Otsuki S, Nonaka T, Taksshima N, Qian W, Ishihara A, Imai T, Kabe T. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy & Fuels , 2000, 14(6): 1232–1239
doi: 10.1021/ef000096i
5 Yu G X, Chen H, Lu S X, Zhu Z N. Deep desulfurization of diesel fuels by catalytic oxidation. Frontiers of Chemical Engineering in China , 2007, 1(2): 162–166
doi: 10.1007/s11705-007-0030-8
6 Shiraishi Y, Hirai Y, Komasawa I. Photochemical desulfurization and denitrogenation process for vacuum gas oil using an organic two-phase extraction system. Industrial & Engineering Chemistry Research , 2001, 40(1): 293–303
doi: 10.1021/ie000707u
7 Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. Chemical Reviews , 1999, 99(8): 2071–2084
doi: 10.1021/cr980032t
8 Wasserscheid P, Keim W. Ionic liquids—new “solutions” for transition metal catalysis. Angewandte Chemie International Edition , 2000, 39(21): 3772–3789
doi: 10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
9 Zhou B L, Fang Y X, Gu H, Huang B H. Ionic liquid mediated esterification of alcohol with acetic acid. Frontiers of Chemical Engineering in China , 2009, 3(2): 211–214
doi: 10.1007/s11705-009-0054-3
10 Wang Y, Yang H. Synthesis of CoPt nanorods in ionic liquids. Journal of the American Chemical Society , 2005, 127(15): 5316–5317
doi: 10.1021/ja043625w
11 Fan Q M, Liu Y X, Zheng Y F. Yan W. Preparation of Ni/SiO2 catalyst in ionic liquids for hydrogenation. Frontiers of Chemical Engineering in China , 2008, 2(1): 63–68
doi: 10.1007/s11705-008-0013-4
12 Wang J J, Pei Y C, Zhao Y, Hu Z G. Recovery of amino acids by imidazolium based ionic liquids from aqueous media. Green Chemistry , 2005, 7(4): 196–202
doi: 10.1039/b415842c
13 Machida H, Taguchi R, Sato Y, Florusse L J, Peters C J, Smith R L. Measurement and correlation of supercritical CO2 and ionic liquid systems for design of advanced unit operations. Frontiers of Chemical Engineering in China , 2009, 3(1): 12–19
doi: 10.1007/s11705-009-0151-3
14 B?smann A, Datsevich L, Jess A, Lauter A, Schmitz C, Wasserscheid P. Deep desulfurization of diesel fuel by extraction with ionic liquids. Chemical Communications (Cambridge) , 2001, (23): 2494–2495
doi: 10.1039/b108411a
15 Zhang S G, Zhang Z C. Novel properties of ionic liquids in selective sulfur removal from fuels at room temperature. Green Chemistry , 2002, 4(4): 376–379
doi: 10.1039/b205170m
16 Huang C P, Chen B H, Zhang J, Liu Z C, Li Y X. Desulfurization of gasoline by extraction with new ionic liquids. Energy & Fuels , 2004, 18(6): 1862–1864
17 Zhang S G, Zhang Q L, Zhang Z C. Extractive desulfurization and denitrogenation of fuels using ionic liquids. Industrial & Engineering Chemistry Research , 2004, 43(2): 614–622
18 Esser J, Wasserscheid P, Jess A. Desulfurization of oil refinery streams by extraction with ionic liquids. Green Chemistry , 2004, 6: 316–322
doi: 10.1039/b407028c
19 Nie Y, Li C X, Wang Z H. Extractive Desulfurization of fuel oil using alkylimidazole and its mixture with dialkylphosphate ionic liquids. Industrial & Engineering Chemistry Research , 2007, 46(15): 5108–5112
doi: 10.1021/ie070385v
20 Wang J L, Zhao D S, Zhou E P, Dong Z. Desulfurization of gasoline by extraction with N-alkylpyridinium-based ionic liquids. J Fuel Chem Technol , 2007, 35(3): 293–296
doi: 10.1016/S1872-5813(07)60022-X
21 Gao H S, Li Y G, Liu Q F, Li W L, Liu H Z. Desulfurization of fuel by extraction with pyridinium-based ionic liquids. Industrial & Engineering Chemistry Research , 2008, 47(21): 8384–8388
doi: 10.1021/ie800739w
22 Liu D, Gui J Z, Song L, Zhang X, Sun Z L. Deep desulfurization of diesel fuel by extraction with task-specific ionic liquids. J Pet Sci Technol , 2008, 26(9): 973–982
doi: 10.1080/10916460600695496
23 Holbrey J D, Reichert W M, Nieuwenhuyzen M, Sheppard O, Hardacre C, Rogers R D. Liquid clathrate formation in ionic liquid-aromatic mixtures. Chemical Communications (Cambridge) , 2003, (4): 476–477
doi: 10.1039/b212726a
24 Qian T B. Liu W l, Li J H. Polymeric adsorbent and application. Beijing: Chemical Industry Press, 1990. 197–198
25 Alexandra M, Emmanuelle S, Valerie M, David L, Michel F, Michel V, Marc L. Selective elimination of alkyldibenzothiophenes from gas oil by formation of insoluble charge-transfer complexes. Energy & Fuels , 1999, 13(4): 881–887
doi: 10.1021/ef980262a
26 Zhou J X, Mao J B, Zhang S G. Ab initio calculations of the interaction between thiophene and ionic liquids. Fuel Processing Technology , 2008, 89(12): 1456–1514
doi: 10.1016/j.fuproc.2008.07.006
[1] Boa Jin, Hyunmin Park, Yang Liu, Leijing Liu, Jongdeok An, Wenjing Tian, Chan Im. Charge-carrier photogeneration and extraction dynamics of polymer solar cells probed by a transient photocurrent nearby the regime of the space charge-limited current[J]. Front. Chem. Sci. Eng., 2021, 15(1): 164-179.
[2] Jinhua Zhang, Yuanbin She. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1052-1064.
[3] Zishuai Liu, Yimin Zhang, Zilin Dai, Jing Huang, Cong Liu. Coextraction of vanadium and manganese from high-manganese containing vanadium wastewater by a solvent extraction-precipitation process[J]. Front. Chem. Sci. Eng., 2020, 14(5): 902-912.
[4] Hui Shang, Pengfei Ye, Yude Yue, Tianye Wang, Wenhui Zhang, Sainab Omar, Jiawei Wang. Experimental and theoretical study of microwave enhanced catalytic hydrodesulfurization of thiophene in a continuous-flow reactor[J]. Front. Chem. Sci. Eng., 2019, 13(4): 744-758.
[5] Elena Graczová, Branislav Šulgan, Samuel Barabas, Pavol Steltenpohl. Methyl acetate–methanol mixture separation by extractive distillation: Economic aspects[J]. Front. Chem. Sci. Eng., 2018, 12(4): 670-682.
[6] Weibin Kong, Qi Miao, Peiyong Qin, Jan Baeyens, Tianwei Tan. Environmental and economic assessment of vegetable oil production using membrane separation and vapor recompression[J]. Front. Chem. Sci. Eng., 2017, 11(2): 166-176.
[7] Yunzhao Li,Xingfu Song,Guilan Chen,Shuying Sun,Yanxia Xu,Jianguo Yu. Extraction of hydrogen chloride by a coupled reaction-solvent extraction process[J]. Front. Chem. Sci. Eng., 2015, 9(4): 479-487.
[8] Yunling Gao,Ying Hu,Kejian Yao. Surface molecularly imprinted polymers for solid-phase extraction of (--)-epigallocatechin gallate from toothpaste[J]. Front. Chem. Sci. Eng., 2015, 9(4): 467-478.
[9] Qiang Wei, Jinwen Chen, Chaojie Song, Guangchun Li. HDS of dibenzothiophenes and hydrogenation of tetralin over a SiO2 supported Ni-Mo-S catalyst? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 336-348.
[10] Hua Zhao,Gary A. Baker. Oxidative desulfurization of fuels using ionic liquids: A review? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 262-279.
[11] Palanisamy RAVICHANDIRAN, Dhanaraj PREMNATH, Samuel VASANTHKUMAR. Synthesis, molecular docking and antibacterial evaluation of 2-(4-(4-aminophenylsulfonyl)phenylamino)-3-(thiophen-2-ylthio)naphthalene-1,4-dione derivatives[J]. Front. Chem. Sci. Eng., 2015, 9(1): 46-56.
[12] Pravin WAKTE,Ajit PATIL,Bhusari SACHIN,Munnaza QUAZI,Shraddha JABDE,Devanand SHINDE. Optimization of microwave-assisted extraction for picroside I and picroside II from Picrorrhiza kurroa using Box-Behnken experimental design[J]. Front. Chem. Sci. Eng., 2014, 8(4): 445-453.
[13] Chuanzhu LU,Hui FU,Huipeng LI,Hua ZHAO,Tianfeng CAI. Oxidation-extraction desulfurization of model oil over Zr-ZSM-5/SBA-15 and kinetic study[J]. Front. Chem. Sci. Eng., 2014, 8(2): 203-211.
[14] J. Sargolzaei, A. Hedayati Moghaddam. Predicting the yield of pomegranate oil from supercritical extraction using artificial neural networks and an adaptive-network-based fuzzy inference system[J]. Front Chem Sci Eng, 2013, 7(3): 357-365.
[15] Aihua KONG, Yanyu WEI, Yonghong LI. Reactive adsorption desulfurization over a Ni/ZnO adsorbent prepared by homogeneous precipitation[J]. Front Chem Sci Eng, 2013, 7(2): 170-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed