Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (1) : 131-138    https://doi.org/10.1007/s11705-010-0556-z
RESEARCH ARTICLE
Spectrokinetics study of probable effects of diverse inorganic ions on bleaching of dye
Rafia AZMAT1(), Masooda QADRI2, Fahim UDDIN2
1. Department of Chemistry, Jinnah University for Women, 5C Nazimabad, Karachi 74600, Pakistan; 2. Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
 Download: PDF(248 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Toluidine blue (TB) is an important anticoagulant metachromasia molecule showing a pronounced variation in the visible spectrum due to the aggregation phenomenon and electrostatic interaction with the charged synthetic and biologic polymers. The current study describes the interactive role of diverse inorganic material ions on the bleaching of toluidine blue (tolonium chloride) (TB+) with urea in acidic and basic media using the spectrophotometric technique. The spectra of TB and urea with different cations and anions were monitored and their characteristic features are presented here. The negative effect of added cations on reduction may be the result of altered electron pathways which led to suppression of the reduction/bleaching of TB, while a slight decrease in dye reduction by added anions may be due to the scavenging of the OH* radical. It has been observed in the case of Co2+ that in addition to the electron-transfer reaction, other processes like layer and precipitate formation also appear to be taking place. The dye bleaching process followed pseudo first order kinetics with respect to TB, urea, and H+ ion, whereas significant decoloration in the presence of urea proved that reductants control the redox reaction. No decoloration in acidic medium with diverse ions was seen compared to alkaline media, showing that water pH played an important role in the bleaching of dye. The reduction/bleaching of dye was investigated at different temperatures, and energy parameters were evaluated for a TB+-Urea reaction, including the energy of activation (Ea = 39.60 kJ·mol-1), enthalpy of activation (?H# = 34?kJ·mol-1), entropy of activation (?S# = 146.5 kJ mol-1·K-1), and free energy of activation (ΔG* = -52.35 kJ·mol-1). A mechanism of interaction of diverse ions in dye bleaching and a mechanism of reduction based on the above findings is proposed.

Keywords TB      diverse ions      suppress      decoloration     
Corresponding Author(s): AZMAT Rafia,Email:rafiasaeed200@yahoo.com   
Issue Date: 05 March 2011
 Cite this article:   
Rafia AZMAT,Masooda QADRI,Fahim UDDIN. Spectrokinetics study of probable effects of diverse inorganic ions on bleaching of dye[J]. Front Chem Sci Eng, 2011, 5(1): 131-138.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-010-0556-z
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I1/131
Fig.1  Effect of urea on reduction of dye at temperature= 25°C, [TB] = 2.0 × 10 mol·L, [H] = 1.0 × 10 mol·L
[urea] /( mol·L-1)dxdt×104/(mol·L-1·s-1)k × 102 /s-1decoloration/%
0.052.01.2969.1
1.002.01.3272
1.53.01.3475
2.04.01.5477.5
2.54.01.4178
Tab.1  Influence of urea concentration on rate and % decoloration of TB
[H+] /( mol·L-1)dxdt×104/(mol·L-1·s-1)k × 102 /s-1decoloration/%
0.031.01.765
0.062.02.870
0.13.02.972
0.24.04.078
0.48.06.780
Tab.2  Influence of H concentration on rate and % decoloration of TB
[TB] × 105 /( mol·L-1)dxdt×104/(mol·L-1·s-1)k × 102 /s-1decoloration/%
1.004.001.6168
2.003.001.3460
3.003.001.2750
4.003.001.2750
5.003.001.2750
Tab.3  Influence of TB on rate and % decoloration
Fig.2  The plot of ln ln [urea]
Fig.3  The plot of vs H for reduction of TB urea
Fig.4  Effect of dye on reduction of dye. Temperature= 25°C, [urea] = 1.0 × 10 mol·L, [H] = 1.0 × 10 mol·L
ionsk × 102 /s-1decoloration/% literature [9] comparison
Na+-2.0-
K+-2.0-
Mg2+---
Co2+---
CO3-8.914.5923
HCO3-1.1812.9023
SO4-9.1536.6938
NO3-8.1115.8120
Cl-1.1516.0016.08
Tab.4  Effect of different ions on TB-urea reaction
Fig.5  Absorption spectrum of TB urea in presence of Co
Fig.6  
Fig.7  Absorption spectrum of TB vs urea in presence of different anions.
Fig.7  Absorption spectrum of TB vs urea in presence of different anions.
NaNO3 /mol·L-1dxdt×104/(mol·L-1)k × 102 /s-1decoloration/%
0.12.08.1113.81
0.22.08.833.7
0.31.09.638.5
activation parameters
temperature /K303313323333343
k × 102 /s-14.96.27.27.88.9
protonation constant /K9.19.69.812.315.2
Ea = 39.60 kJ·mol-1, ΔH* = 34.21 kJ·mol-1, ΔS* = 146.5 kJ·mol-1·K-1, ΔG* = -52.35 kJ·mol-1
Tab.5  Effect of salt and temperature on rate constant on TB-urea reaction
1 Pakshirajan K, Rene E R, Swaminathan T. Decolourisation of azo dye containing synthetic wastewater in a rotating biological contactor reactor: a factorial design study. International Journal of Environment and Pollution , 2009, 37(2-3): 266-275
doi: 10.1504/IJEP.2009.025130
2 Cooper A T, Goswami D Y. Evaluation of methylene blue and rose bengal for dye sensitized solar water treatment. Journal of Solar Energy Engineering , 2002, 124(3): 305-310
doi: 10.1115/1.1498850
3 Kornaros M, Lyberatos G. Biological treatment of wastewaters from a dye manufacturing company using a trickling filter. Journal of Hazardous Materials , 2006, 136(1): 95-102
doi: 10.1016/j.jhazmat.2005.11.018
4 Mills G, Hoffmann M R. Photocatalytic degradation of pentachlorophenol on titanium dioxide particles: identification of intermediates and mechanism of reaction. Environmental Science & Technology , 1993, 27(8): 1681-1689
doi: 10.1021/es00045a027
5 Dhale A D, Mahajani V V. Reactive dye house wastewater treatment. Use of hybrid technology: membrane, sonication followed by wet oxidation. Industrial & Engineering Chemistry Research , 1999, 38(5): 2058-2064
doi: 10.1021/ie980615t
6 Yeung K W, Shang S M. The influence of metal ions on the aggregation and hydrophobicity of dyes in solutions. Coloration Technology , 1999, 115(7-8): 228-232
doi: 10.1111/j.1478-4408.1999.tb00361.x
7 Rauf M A, Ashraf S S, Alhadrami S N. Photolytic oxidation of coomassie brilliant blue with H2O2. Dyes and Pigments , 2005, 66(3): 197-200
doi: 10.1016/j.dyepig.2004.09.006
8 Ashraf S S, Rauf M A, Alhadrami S. Degradation of methyl red using Fenton’s reagent and the effect of various salts. Dyes and Pigments , 2006, 69(1-2): 74-78
doi: 10.1016/j.dyepig.2005.02.009
9 Rauf M A, Bukallah S B, Hamidi A, Sulaiman A, Hamadi F. The effect of operational parameters on the photo-induced decoloration of dyes using a hybrid catalyst V2O5/TiO2. Chemical Engineering Journal , 2007, 129(1-3): 167-172
doi: 10.1016/j.cej.2006.10.031
10 Chen C, Li X, Ma W, Zhao J, Hidaka H, Serpone N. Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: a probe for the interfacial electron transfer process and reaction mechanism. J Phys Chem B , 2002, 106(2): 318-324
doi: 10.1021/jp0119025
11 Missmann M, Jank S, Laimer K, Gassner R. A reason for the use of toluidine blue staining in the presurgical management of patients with oral squamous cell carcinomas. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology , 2006, 102(6): 741-743
doi: 10.1016/j.tripleo.2006.03.012
12 Jonnalagadda S B, Dumba M. Reduction of toluidine blue by stannous ion at low pH: Kinetics and simulation. International Journal of Chemical Kinetics , 1993, 25(9): 745-753
doi: 10.1002/kin.550250905
13 Jonnalagadda S B, Tshabalala D. A kinetic study of the reduction of toluidine blue with thiourea in acidic solution. International Journal of Chemical Kinetics , 1992, 24(11): 999-1007
doi: 10.1002/kin.550241110
14 Azmat R, Yasmeen B, Uddin F. Kinetics of methylene blue reduction with oxalic acid by visible spectrophotometric method. Asian Journal of Chemistry , 2007, 19: 1115-1121
15 Azmat R, Ahmed S, Qureshi S, Mohammed F V, Uddin F. Aerobic oxidation of D-glucose by methylene green in alkaline aqueous solution by visible spectrophotometry. Journal of Applied Science , 2006, 6(13): 2784-2788
doi: 10.3923/jas.2006.2784.2788
16 Azmat R, Uddin F. Photo bleaching of methylene blue with galactose and D-mannose by high intensity radiations. Canadian Journal of Pure and Applied Sciences , 2008, 2: 275-283
17 Azmat R, Qamer N, Saeed A, Uddin F. Reduction of methylene green by EDTA. Kinetic and thermodynamic aspects. Chinese Journal of Chemistry , 2008, 26: 631-634
doi: 10.1002/cjoc.200890119
18 Uddin F, Hasnain Q Z. Photochemical reduction of thionine with dimethylamine. Kuwait J Sci Eng , 2002, 29: 67-85
19 Uddin F. Kinetics of photochemical reactions of thionine with thiourea. European Journal of Organic Chemistry , 2000, 7: 1345-1351
doi: 10.1002/1099-0690(200004)2000:7<1345::AID-EJOC1345>3.0.CO;2-0
20 Arikan B, Tuncay M. Micellar effects and reactant incorporation in reduction of toluidine blue by ascorbic acid. Dyes and Pigments , 2005, 64(1): 1-8
doi: 10.1016/j.dyepig.2004.03.013
21 Mahadevan J, Guha S N, Kishore K, Moorthy P N. One-electron reduction of toluidine blue. A pulse radiolysis study. Journal of Chemical Sciences , 1989, 101: 43-53
22 Snehalatha T, Rajanna K C, Saiprakash P K. Methylene blue-ascorbic acid: an undergraduate experiment in kinetics. Journal of Chemical Education , 1997, 74(2): 228-233
doi: 10.1021/ed074p228
23 Karunaratne DeFazio S A, Lemley A T. Electrochemical treatment of acid dye systems: sodium meta-bisulfite addition to the andco system. Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances and Environmental Engineering , 1999, 34(2): 217-240
doi: 10.1080/10934529909376833
24 Muruganandham M, Swaminathan M. Photocatalytic decolorisation and degradation of reactive orange 4 by TiO2-UV process. Dyes and Pigments , 2006, 68(2-3): 133-142
doi: 10.1016/j.dyepig.2005.01.004
[1] Aramballi J. Savyasachi, David F. Caffrey, Kevin Byrne, Gerard Tobin, Bruno D'Agostino, Wolfgang Schmitt, Thorfinnur Gunnlaugsson. Self-assembled bright luminescent hierarchical materials from a tripodal benzoate antenna and heptadentate Eu(III) and Tb(III) cyclen complexes[J]. Front. Chem. Sci. Eng., 2019, 13(1): 171-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed