Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (2) : 173-178    https://doi.org/10.1007/s11705-010-0562-1
REVIEW ARTICLE
Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas emissions
Maryam Takht Ravanchi(), Saeed Sahebdelfar, Farnaz Tahriri Zangeneh
Catalyst Research Group, Petrochemical Research and Technology Company, National Petrochemical Company, Tehran 14358-84711, Iran
 Download: PDF(125 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The mitigation of greenhouse gas emissions to acceptable levels is arguably the greatest environmental challenge these days. Vast utilization of fossil fuels and forest destruction are main causes of CO2 increase in the atmosphere. Carbon dioxide sequestration that consists of separation, transportation and utilization or storage of CO2, is one way for reduction of its emission, in which the most costly section is separation. Different methods can be used for carbon dioxide separation such as absorption, membrane separation, adsorption and cryogenic distillation. Economic, technical and environmental issues should be considered in selection of the technology for particular application. Carbon dioxide concentration, temperature, pressure and flow rate are influential operating parameters in the selection of the appropriate separation method. Nowadays, absorption is the worldwide industrial separation method. New researches are focused on developing new stable solvents and efficient column configuration with suitable internals to minimize pressure drop. Membrane separation and adsorption (PSA type) are other long-term alternatives that can increase separation efficiency and decrease separation cost. The level of energy consumption in various separation methods are in the order: chemical absorption>physical absorption>membrane separation. Because of high investment costs, current separation technologies are suitable for large concentrated sources. In the present paper, different processes for carbon dioxide separation are investigated and compared. Available technologies and commercial plants for CO2 sequestration are provided.

Keywords carbon dioxide      greenhouse effect      separation      membrane      absorption      adsorption     
Corresponding Author(s): Takht Ravanchi Maryam,Email:m.ravanchi@npc-rt.ir, ravanchi@yahoo.com   
Issue Date: 05 June 2011
 Cite this article:   
Maryam Takht Ravanchi,Saeed Sahebdelfar,Farnaz Tahriri Zangeneh. Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas emissions[J]. Front Chem Sci Eng, 2011, 5(2): 173-178.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-010-0562-1
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I2/173
Fig.1  CO capture systems []
Fig.2  CO separation cost in different industrial units []
technologysystem requirementsadvantagesdisadvantages
chemical absorption- absorption and stripping section- suitable for lean streams of CO2 such as exhaust gases- high energy requirement for solvent recovery
- operating at normal temperature and pressure
- solvent- commercial technology- high solvent loss in case of presence of impurities in feed
physical absorption- absorption and stripping section- less energy requirement- need high operating pressure
- solvent- less sensitivity of solvent to feed impurities- better efficiency for gases with high concentration of CO2
adsorption- bed(s) of adsorbent- well recovery of CO2- need very high operating pressure
membrane- membrane filter(s)- economy of scale and space requirement- need very high operating pressure
- need to recycle streams
- very costly process
Tab.1  A comparison between different separation methods
processMEA processK2CO3 processMEA processK2CO3 process
CO2 sourcepower plant flue gaspower plant flue gasNH3 syngasNH3 syngas
feed CO2 concentration/vol-%8.58.512.112.1
absorber feed temperature/°F110110150265
absorber feed pressure/psia15.815.8395394
absorber feed partial pressure/psia1.471.4769.963.4
product CO2 pressure/psia26212220
absorber solvent30 wt-% MEA in H2O25 wt-% K2CO3 equivalent35 wt-% MEA in H2O30 wt-% K2CO3 equivalent
capital investment/($ million)
battery limits16.224.915.911.3
off-sites14.012.96.14.6
total fixed capital30.237.822.015.9
CO2 regenerator thermal energy/[Btu/(lb·mol)]71900753004570035300
product value/(¢·lb-1)2.512.921.281.01
Tab.2  Comparison of carbon dioxide separation costs []
locationcapacityfeedstockCO2 usereference
China53000 tones/yearNH3 plant reformer exhausturea

http://web.mit.edu/energylab/www/hjherzog

India49500 tones/yearNH3 plant reformer exhausturea

http://web.mit.edu/energylab/www/hjherzog

Brazil29700 tones/yeargas boilerfood-grade CO2

http://web.mit.edu/energylab/www/hjherzog

Algeria1 million tones/yearnatural gas sweeteningEOR (enhanced oil recovery)[7]
North sea1million tones/yearnatural gas sweeteningEOR[7]
France75000 tones/yearheavy oilonshore sequestration in depleted natural gas field

http://sequestration.mit.edu/index.html

Western Norway1.2 million tones/yearnatural gassequestration in seabed and/or EOR

http://sequestration.mit.edu/index.html

Norway2.5 million tones/yearnatural gassequestration

http://sequestration.mit.edu/index.html

California4-5 million tones/yearpetcoke to hydrogenEOR

http://sequestration.mit.edu/index.html

Tab.3  A list of commercial CO capture plants
1 Bhaskararao B K. Carbon capture in petrochemical operations. Petroleum technology quarterly , 2007, 12: 109-111
2 Stewart C, Hessami M A. A study of methods of carbon dioxide capture and sequestration––the sustainability of a photosynthetic bioreactor approach. Energy Conversion and Management , 2005, 46(3): 403-420
doi: 10.1016/j.enconman.2004.03.009
3 Omae I. Aspects of carbon dioxide utilization. Catalysis Today , 2006, 115(1-4): 33-52
doi: 10.1016/j.cattod.2006.02.024
4 Arakawa H, Aresta M, Armor J N, Barteau M A, Beckman E J, Bell A T, Bercaw J E, Creutz C, Dinjus E, Dixon D A, Domen K, DuBois D L, Eckert J, Fujita E, Gibson D H, Goddard W A, Goodman D W, Keller J, Kubas G J, Kung H H, Lyons J E, Manzer L E, Marks T J, Morokuma K, Nicholas K M, Periana R, Que L, Rostrup-Nielson J, Sachtler W M, Schmidt L D, Sen A, Somorjai G A, Stair P C, Stults B R, Tumas W. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chemical Reviews , 2001, 101(4): 953-996
doi: 10.1021/cr000018s
5 Zevenhoven R, Eloneva S, Teir S. Chemical fixation of CO2 in carbonates: routes to valuable products and long-term storage. Catalysis Today , 2006, 115(1-4): 73-79
doi: 10.1016/j.cattod.2006.02.020
6 Song C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today , 2006, 115(1-4): 2-32
doi: 10.1016/j.cattod.2006.02.029
7 Metz B, Davidson O, Coninck H, Loos M, Meyer L. Carbon Dioxide Capture and Storage. London: Cambridge University Press, 2005, 107-171
8 Menon A, Duss M, Bachmann C. Post combustion capture of CO2. Petroleum technology quarterly , 2009, 2: 115-121
9 Thomas D C. Carbon Dioxide Capture for Storage in Deep Geologic Formations. London: Elsevier, 2005, 91-97
10 Olajire A A. CO2 capture and separation technologies for end-of-pipe applications–a review. Energy , 2010, 35(6): 2610-2628
doi: 10.1016/j.energy.2010.02.030
11 Gorji A H, Kaghazchi T. CO2/H2 separation by facilitated transport membranes immobilized with aqueous single and mixed amine solutions: experimental and modeling study. Journal of Membrane Science , 2008, 325(1): 40-49
doi: 10.1016/j.memsci.2008.06.063
12 Heydari G A, Kaghazchi T, Kargari A. Analytical approximate solution of competitive facilitated transport of acid gases through liquid membranes. Desalination , 2009, 235(1-3): 245-263
doi: 10.1016/j.desal.2008.02.010
13 Gorji A H, Kaghazchi T. Mathematical modeling of CO2 facilitated transport through liquid membranes containing amines as carrier. Canadian Journal of Chemical Engineering , 2008, 86(6): 1039-1046
doi: 10.1002/cjce.20107
14 Pennline H W, Luebke D R, Jones K L, Myers C R, Morsi B I, Heintz Y J, Ilconich J B. Progress in carbon dioxide capture and separation research for gasification-based power generation point sources. Fuel Processing Technology , 2008, 89(9): 897-907
doi: 10.1016/j.fuproc.2008.02.002
15 Yang H, Xu Z, Fan M, Gupta R, Slimane R B, Bland A E, Wright I. Progress in carbon dioxide separation and capture: a review. Journal of Environmental Sciences (China) , 2008, 20(1): 14-27
doi: 10.1016/S1001-0742(08)60002-9
16 Granite E J, O’Brien T. Review of novel methods for carbon dioxide separation from flue and fuel gases. Fuel Processing Technology , 2005, 86(14-15): 1423-1434
doi: 10.1016/j.fuproc.2005.01.001
17 Pennline H W, Granite E J, Luebke D R, Kitchin J R, Landon J, Weiland L M. Separation of CO2 from flue gas using electrochemical cells. Fuel , 2010, 89(6): 1307-1314
doi: 10.1016/j.fuel.2009.11.036
18 Edmonds J A, Wise M A, Dooley J J, Kim S H, Smith S J, Runci P J, Clarke L E, Malone E L, Stokes G M. Global Energy Technology Strategy. United States of America: Battelle Memorial Institute , 2007, 94-105
19 Kovvali A S, Sirkar K K. Carbon dioxide separation with novel solvents as liquid membranes. Industrial & Engineering Chemistry Research , 2002, 41(9): 2287-2295
doi: 10.1021/ie010757e
20 Dowell N M, Galindo A, Jackson G, Adjiman C S. Integrated solvent and process design for the reactive separation of CO2 from flue gas. Computer Aided Chemical Engineering , 2010, 28: 1231-1236
doi: 10.1016/S1570-7946(10)28206-8
21 Yamasaki A. An overview of CO2 mitigation options for global warming—emphasizing CO2 sequestration options. Journal of Chemical Engineering of Japan , 2003, 36(4): 361-375
doi: 10.1252/jcej.36.361
22 Ahmad A L, Sunarti A R, Lee K T, Fernando W J N. CO2 removal using membrane gas absorption. International Journal of Greenhouse Gas Control , 2010, 4(3): 495-498
doi: 10.1016/j.ijggc.2009.12.003
23 Nirula S C, Ashraf M.CO2 separation. Process Economic Program (PEP) Report 180, Chapter 4 , 39-92
24 Tabe-Mohammadi A. A review of the applications of membrane separation technology in natural gas treatment. Separation Science and Technology , 1999, 34(10): 2095-2111
doi: 10.1081/SS-100100758
25 Anson M, Marchese J, Garis E, Ochoa N, Pagliero C. ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science , 2004, 243(1-2): 19-28
doi: 10.1016/j.memsci.2004.05.008
26 Feron P H P, Jansen A E, Klaassen R. Membrane technology in carbon dioxide removal. Energy Conversion and Management , 1992, 33(5-8): 421-428
doi: 10.1016/0196-8904(92)90039-Y
27 Okabe K, Mano H, Fujioka Y.Separation and recovery of carbon dioxide by a membrane flash process. Int J of greenhouse gas control , 2008, 2: 485-491
28 Jansen D, Dijkstra J W, van den Brink R W, Peters T A, Stange M, Bredesen R, Goldbach A, Xu H Y, Gottschalk A, Doukelis A. Hydrogen membrane reactors for CO2 capture. Energy Procedia , 2009, 1(1): 253-260
doi: 10.1016/j.egypro.2009.01.036
29 Powell C E, Qiao G G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science , 2006, 279(1-2): 1-49
doi: 10.1016/j.memsci.2005.12.062
30 Ho M T, Allinson G, Wiley D E. Comparison of CO2 separation options for geo-sequestration: are membranes competitive. Desalination , 2006, 192(1-3): 288-295
doi: 10.1016/j.desal.2005.04.135
31 Ebner A D, Ritter J A. State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries. Separation Science and Technology , 2009, 44(6): 1273-1421
doi: 10.1080/01496390902733314
32 Plaza M G, Pevida C, Martín C F, Fermoso J, Pis J J, Rubiera F. Developing almond shell-derived activated carbons as CO2 adsorbents. Separation and Purification Technology , 2010, 71(1): 102-106
doi: 10.1016/j.seppur.2009.11.008
33 Chaffee A L, Knowles G P, Liang Z, Zhang J, Xiao P, Webley P A. CO2 capture by adsorption: materials and process development. International Journal of Greenhouse Gas Control , 2007, 1(1): 11-18
doi: 10.1016/S1750-5836(07)00031-X
35 Zanganeh K E, Shafeen A, Salvador C. CO2 capture and development of an advanced pilot-scale cryogenic separation and compression unit. Energy Procedia , 2009, 1(1): 247-252
doi: 10.1016/j.egypro.2009.01.035
36 Tuinier M J, van Sint Annaland M, Kramer G J, Kuipers J A M. Cryogenic CO2 capture using dynamically operated packed beds. Chemical Engineering Science , 2010, 65(1): 114-119
doi: 10.1016/j.ces.2009.01.055
[1] Feng Sun, Jinren Lu, Yuhong Wang, Jie Xiong, Congjie Gao, Jia Xu. Reductant-assisted polydopamine-modified membranes for efficient water purification[J]. Front. Chem. Sci. Eng., 2021, 15(1): 109-117.
[2] Huaiwei Shi, Teng Zhou. Computational design of heterogeneous catalysts and gas separation materials for advanced chemical processing[J]. Front. Chem. Sci. Eng., 2021, 15(1): 49-59.
[3] Xuewen Hu, Yun Wang, Jinbo Ou Yang, Yang Li, Peng Wu, Hengju Zhang, Dingzhong Yuan, Yan Liu, Zhenyu Wu, Zhirong Liu. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1029-1038.
[4] Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian. Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1018-1028.
[5] Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front. Chem. Sci. Eng., 2020, 14(5): 857-867.
[6] Hongzhe Hou, Yiqing Luo. A novel method for generating distillation configurations[J]. Front. Chem. Sci. Eng., 2020, 14(5): 834-846.
[7] Edward Mohamed Hadji, Bo Fu, Ayob Abebe, Hafiz Muhammad Bilal, Jingtao Wang. Sponge-based materials for oil spill cleanups: A review[J]. Front. Chem. Sci. Eng., 2020, 14(5): 749-762.
[8] Ye Zhang, Jian Song, Josue Quispe Mayta, Fusheng Pan, Xue Gao, Mei Li, Yimeng Song, Meidi Wang, Xingzhong Cao, Zhongyi Jiang. Enhanced desulfurization performance of hybrid membranes using embedded hierarchical porous SBA-15[J]. Front. Chem. Sci. Eng., 2020, 14(4): 661-672.
[9] Feichao Wu, Yanling Wang, Xiongfu Zhang. Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water[J]. Front. Chem. Sci. Eng., 2020, 14(4): 651-660.
[10] Alireza Hadi, Javad Karimi-Sabet, Abolfazl Dastbaz. Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: A response surface study[J]. Front. Chem. Sci. Eng., 2020, 14(4): 579-594.
[11] Hanlu Wang, Idris Jibrin, Xingye Zeng. Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite[J]. Front. Chem. Sci. Eng., 2020, 14(4): 546-560.
[12] Majid Peyravi. Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies[J]. Front. Chem. Sci. Eng., 2020, 14(4): 673-687.
[13] Colin A. Scholes. Pilot plants of membrane technology in industry: Challenges and key learnings[J]. Front. Chem. Sci. Eng., 2020, 14(3): 305-316.
[14] Guoxing Chen, Marc Widenmeyer, Binjie Tang, Louise Kaeswurm, Ling Wang, Armin Feldhoff, Anke Weidenkaff. A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+d Ruddlesden-Popper membrane for oxygen separation[J]. Front. Chem. Sci. Eng., 2020, 14(3): 405-414.
[15] Shinji Kanehashi, Colin A. Scholes. Perspective of mixed matrix membranes for carbon capture[J]. Front. Chem. Sci. Eng., 2020, 14(3): 460-469.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed