Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (2) : 188-193    https://doi.org/10.1007/s11705-010-1015-6
REVIEW ARTICLE
Recent advances in the catalytic pyrolysis of biomass
Changwei HU(), Yu YANG, Jia LUO, Pan PAN, Dongmei TONG, Guiying LI
Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
 Download: PDF(106 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Biomass is considered as a renewable and alternative resource for the production of fuels and chemicals, since it is the only carbon and hydrogen containing resource that we can find in the world except for fossil resources, capable of being converted to hydrocarbons. The pyrolytic liquefaction of biomass is a promising way to convert biomass to useful products. This paper briefly surveys the present status of the direct catalytic pyrolysis for the liquefaction of biomass. The direct use of catalysts could decrease the pyrolysis temperature, increase the conversion of biomass and the yield of bio-oil, and change the distribution of the pyrolytic liquid products then improve the quality of the bio-oil obtained. The fact that biomass is in solid state present great challenges for its conversion and for the effective use of catalysts due to the bad heat transfer characteristics and bad mass transfer properties. These barriers appeal for the development of a new catalyst and new catalytic process as well as the integration of both. Process design and process intensification are of significant importance in the catalytic conversion of biomass.

Keywords biomass      liquefaction      catalysis      bio-oil      process intensification     
Corresponding Author(s): HU Changwei,Email:gchem@scu.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Changwei HU,Yu YANG,Jia LUO, et al. Recent advances in the catalytic pyrolysis of biomass[J]. Front Chem Sci Eng, 2011, 5(2): 188-193.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-010-1015-6
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I2/188
sampleTiCTmCTfC
cellulose [12]
without catalyst313368395
+ micro-NiO303362390
+ nano-NiO294351375
cellulose [13]
without catalyst338354
+ ZnCl2192238
wood [14]
without catalyst200365-
+ CCA1175325-
+ CCA2175325-
acid washed M. Sinensis [15]
without catalyst-388-
+ K2CO3-353
acid washed A. Donax [15]
without catalyst-390-
+ K2CO3-340-
Tab.1  Comparison of the pyrolysis temperature for several typical biomass samples in the presence and absence of catalyst
catalystraw materialbio-oil yield (without catalyst)bio-oil yield (with catalyst)
NaY [19]neosinocalamus affinis19.7%64.1%
bambusa rigida42.3%65.2%
pubescens35.7%67.2%
dendrocalamuslatiflorus53.3%68.8%
HY [20]pubescens38.4%46.1%
Criterion-424pistacia khinjuk [21]57.6%66.5%
BP 318969.2%
Criterion-534euphorbia rigida [22]21.6%31%
activated alumina27.5%
klinoptilolite28.1%
DHC-32euphorbia rigida [23]21.1%26.1%
HC-K 1.3Q26.5%
DHC-32sesame stalk [23]24%27.5%
HC-K 1.3Q28.2%
clinoptilitecottonseed cake [24]25%31%
Tab.2  Effect of different kinds of catalysts on the yield of bio-oil
1 Rostrup-Nielsen J. Chemistry: making fuels from biomass. Science , 2005, 308: 1421–1422
doi: 10.1126/science.1113354
2 Tilman D, Hill J, Lehman C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science , 2006, 314: 1598–1600
doi: 10.1126/science.1133306
3 Dodds D, Gross R. Chemicals from biomass. Science , 2007, 318: 1250–1251
doi: 10.1126/science.1146356
4 Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energ Convers Manage , 2004, 45: 651–671
doi: 10.1016/S0196-8904(03)00177-8
5 Bridgwater A, Meier D, Radlein D. An overview of fast pyrolysis of biomass. Org Geochem , 1999, 30: 1479–1493
doi: 10.1016/S0146-6380(99)00120-5
6 Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chem Rev , 2007, 107: 2411–2502
doi: 10.1021/cr050989d
7 Lv P, Yuan Z, Wu C, Ma L, Chen Y, Tsubaki N. Bio-syngas production from biomass catalytic gasification. Energ Convers Manage , 2007, 48: 1132–1139
doi: 10.1016/j.enconman.2006.10.014
8 Goyal H, Seal D, Saxena R. Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sust Energ Rev , 2008, 12: 504–517
doi: 10.1016/j.rser.2006.07.014
9 Bridgwater A. Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catal Today , 1996, 29: 285–295
doi: 10.1016/0920-5861(95)00294-4
10 Zhang Q, Chang J, Wang T, Xu Y. Review of biomass pyrolysis oil properties and upgrading research. Energ Convers Manage , 2007, 48: 87–92
doi: 10.1016/j.enconman.2006.05.010
11 Samolada M, Papafotica A, Vasalos I. Catalyst evaluation for catalytic biomass pyrolysis. Energy Fuel , 2000, 14: 1161–1167
doi: 10.1021/ef000026b
12 Li J, Yan R, Xiao B, Liang D, Lee D. Preparation of nano-NiO particles and evaluation of their catalytic activity in pyrolyzing biomass components. Energy Fuel , 2008, 22: 16–23
doi: 10.1021/ef700283j
13 Amarasekara A, Ebede C. Zinc chloride mediated degradation of cellulose at 200°C and identification of the products. Biores Technol , 2009, 100: 5301–5304
doi: 10.1016/j.biortech.2008.12.066
14 Helsen L, Van den Bulck E. Kinetics of the low-temperature pyrolysis of chromated copper arsenate-treated wood. J Anal Appl pyrol , 2000, 53: 51–79
15 Szabó P, Várhegyi G, Till F, Faix O. Thermogravimetric/mass spectrometric characterization of two energy crops Arundo donax and Miscanthus sinensis. J Anal Appl pyrol , 1996, 36: 179–190
16 Amen-Chen C, Pakdel H, Roy C. Production of monomeric phenols by thermochemical conversion of biomass: a review. Biores Technol , 2001, 79: 277–299
doi: 10.1016/S0960-8524(00)00180-2
17 Pindoria R, Megaritis A, Herod A, Kandiyoti R. A two-stage fixed-bed reactor for direct hydrotreatment of volatiles from the hydropyrolysis of biomass: effect of catalyst temperature pressure and catalyst ageing time on product characteristics. Fuel , 1998, 77: 1715–1726
18 Adam J, BlazsóM, Mészáros E, St?cker M, Nilsen M, Bouzga A, Hustad J, Gr?nli M, ?ye G. Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts. Fuel , 2005, 84: 1494–1502
19 Qi W, Hu C, Li G, Guo L, Yang Y, Luo J, Miao X, Du Y. Catalytic pyrolysis of several kinds of bamboos over zeolite NaY. Green Chem , 2006, 8: 183–190
doi: 10.1039/b510602h
20 Liu W, Hu C, Yang Y, Zhu L, Tong D. Effect of the interference instant of zeolite HY catalyst on the pyrolysis of pubescens. Chinese J Chem Eng , 2010, 18: 351–354
doi: 10.1016/S1004-9541(08)60364-X
21 Onay O. Fast and catalytic pyrolysis of pistacia khinjuk seed in a well-swept fixed bed reactor. Fuel , 2007, 86: 1452–1460
22 Ate? F, P?t?n A, P?t?n E. Fixed bed pyrolysis of euphorbia rigida with different catalysts. Energ Convers Manage , 2005, 46: 421–432
doi: 10.1016/j.enconman.2004.03.011
23 Ate? F, P?t?n A, P?t?n E. Pyrolysis of two different biomass samples in a fixed-bed reactor combined with two different catalysts. Fuel , 2006, 85: 1851–1859
24 P?t?n E, Uzun B, P?t?n A. Fixed-bed catalytic pyrolysis of cotton-seed cake: effects of pyrolysis temperature natural zeolite content and sweeping gas flow rate. Biores Technol , 2006, 97: 701–710
doi: 10.1016/j.biortech.2005.04.005
25 Dobele G, Rossinskaja G, Dizhbite T, Telysheva G, Meier D, Faix O. Application of catalysts for obtaining 6-anhydrosaccharides from cellulose and wood by fast pyrolysis. J Anal Appl pyrol , 2005, 74: 401–405
26 Fabbri D, Torri C, Baravelli V. Effect of zeolites and nanopowder metal oxides on the distribution of chiral anhydrosugars evolved from pyrolysis of cellulose: an analytical study. J Anal Appl pyrol , 2007, 80: 24–29
27 Torri C, Lesci I, Fabbri D. Analytical study on the pyrolytic behaviour of cellulose in the presence of MCM-41 mesoporous materials. J Anal Appl pyrol , 2009, 85: 192–196
28 Di Blasi C, Branca C, Galgano A. Products and global weight loss rates of wood decomposition catalyzed by zinc chloride. Energy Fuel , 2008, 22: 663–670
doi: 10.1021/ef700464s
29 Lu Q, Xiong W, Li W, Guo Q, Zhu X. Catalytic pyrolysis of cellulose with sulfated metal oxides: a promising method for obtaining high yield of light furan compounds. Biores Technol , 2009, 100: 4871–4876
doi: 10.1016/j.biortech.2009.04.068
30 Yang Y, Xiang X, Luo J, Qi W, Yan H, Li G, Hu C. Pyrolysis of glucose over two amphoteric metal oxides. Chem Res Chinese U , 2009, 25: 234–238 (in Chinese)
31 Chen M, Wang J, Zhang M, Zhu X, Min F, Tan Z. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. J Anal Appl pyrol , 2008, 82: 145–150
32 Lappas A, Samolada M, Iatridis D, Voutetakis S, Vasalos I. Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals. Fuel , 2002, 81: 2087–2095
33 Zhang H, Xiao R, Huang H, Xiao G. Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Biores Technol , 2009, 100: 1428–1434
doi: 10.1016/j.biortech.2008.08.031
34 Pan P, Hu C, Yang W, Li Y, Dong L, Zhu L, Tong D, Qing R, Fan Y. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp, residue for renewable bio-oils. Biores Technol , 2010, 101: 4593–4599
doi: 10.1016/j.biortech.2010.01.070
35 Lu Q, Tang Z, Zhang Y, Zhu X. Catalytic upgrading of biomass fast pyrolysis vapors with Pd/SBA-15 catalysts. Ind Eng Chem Res , 2010, 49: 2573–2580
doi: 10.1021/ie901198s
36 Aho A, Kumar N, Er?nen K, Salmi T, Hupa M, Murzin D. Catalytic pyrolysis of biomass in a fluidized bed reactor: influence of the acidity of H-Beta zeolite. Process Saf Environ , 2007, 85: 473–480
doi: 10.1205/psep07012
37 Liu W, Hu C, Yang Y, Tong D, Li G, Zhu L. Influence of ZSM-5 zeolite on the pyrolytic intermediates from the co-pyrolysis of pubescens and LDPE. Energ Convers Manage , 2010, 51: 1025–1032
doi: 10.1016/j.enconman.2009.12.005
38 Demiral I, Sens?z S. The effects of different catalysts on the pyrolysis of industrial wastes (olive and hazelnut bagasse). Biores Technol , 2008, 99: 8002–8007
doi: 10.1016/j.biortech.2008.03.053
39 Williams P, Horne P. The influence of catalyst regeneration on the composition of zeolite-upgraded biomass pyrolysis oils. Fuel , 1995, 74: 1839–1851
40 Horne P, Williams P. Upgrading of biomass-derived pyrolytic vapours over zeolite ZSM-5 catalyst: effect of catalyst dilution on product yields. Fuel , 1996, 75: 1043–1050
41 Vitolo S, Bresci B, Seggiani M, Gallo M. Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading-regenerating cycles. Fuel , 2001, 80: 17–26
42 Di Blasi C. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energ Combus , 2008, 34: 47–90
doi: 10.1016/j.pecs.2006.12.001
[1] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[2] Sainab Omar, Yang Yang, Jiawei Wang. A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids[J]. Front. Chem. Sci. Eng., 2021, 15(1): 4-17.
[3] Qingzhuo Ni, Hao Cheng, Jianfeng Ma, Yong Kong, Sridhar Komarneni. Efficient degradation of orange II by ZnMn2O4 in a novel photo-chemical catalysis system[J]. Front. Chem. Sci. Eng., 2020, 14(6): 956-966.
[4] Baoyu Liu, Qiaowen Mu, Jiajin Huang, Wei Tan, Jing Xiao. Fabrication of titanosilicate pillared MFI zeolites with tailored catalytic activity[J]. Front. Chem. Sci. Eng., 2020, 14(5): 772-782.
[5] Sen Wang, Shiyun Liu, Danhua Mei, Rusen Zhou, Congcong Jiang, Xianhui Zhang, Zhi Fang, Kostya (Ken) Ostrikov. Liquid discharge plasma for fast biomass liquefaction at mild conditions: The effects of homogeneous catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 763-771.
[6] Chunyan Yang, Xiaoliang Yuan, Xueting Wang, Kejing Wu, Yingying Liu, Changjun Liu, Houfang Lu, Bin Liang. Ball milling promoted direct liquefaction of lignocellulosic biomass in supercritical ethanol[J]. Front. Chem. Sci. Eng., 2020, 14(4): 605-613.
[7] Cyrine Ayed, Wei Huang, Kai A. I. Zhang. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media[J]. Front. Chem. Sci. Eng., 2020, 14(3): 397-404.
[8] Xin Gao, Dandan Shu, Xingang Li, Hong Li. Improved film evaporator for mechanistic understanding of microwave-induced separation process[J]. Front. Chem. Sci. Eng., 2019, 13(4): 759-771.
[9] Sainab Omar, Suzanne Alsamaq, Yang Yang, Jiawei Wang. Production of renewable fuels by blending bio-oil with alcohols and upgrading under supercritical conditions[J]. Front. Chem. Sci. Eng., 2019, 13(4): 702-717.
[10] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[11] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[12] Anandarup Goswami, Manoj B. Gawande. Phosphorene: Current status, challenges and opportunities[J]. Front. Chem. Sci. Eng., 2019, 13(2): 296-309.
[13] J. Christopher Whitehead. Plasma-catalysis: Is it just a question of scale?[J]. Front. Chem. Sci. Eng., 2019, 13(2): 264-273.
[14] Parimal Pal, Ramesh Kumar, Subhamay Banerjee. Purification and concentration of gluconic acid from an integrated fermentation and membrane process using response surface optimized conditions[J]. Front. Chem. Sci. Eng., 2019, 13(1): 152-163.
[15] Attila Egedy, Lívia Gyurik, Tamás Varga, Jun Zou, Norbert Miskolczi, Haiping Yang. Kinetic-compartmental modelling of potassium-containing cellulose feedstock gasification[J]. Front. Chem. Sci. Eng., 2018, 12(4): 708-717.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed