Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (1) : 84-93    https://doi.org/10.1007/s11705-011-1164-2
RESEARCH ARTICLE
Coupling the porous conditional moment closure with the random pore model: applications to gasification and CO2 capture
D. N. SAULOV(), C. R. CHODANKA, M. J. CLEARY, A. Y. KLIMENKO
School of Mechanical and Mining Engineering, the University of Queensland, Brisbane 4072, Australia
 Download: PDF(204 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Gasification of coal or biomass with in situ CO2 capture simultaneously allows production of clean hydrogen at relatively low cost and reduced emission of CO2 into the atmosphere. Clearly, this technology has a great potential for a future carbon constrained economy. Therefore, the development of a comprehensive, physically-based gasifier model is important. The sub-models that describe reactive transport processes in coal particles as well as in particles of CO2 sorbent material are among the key sub-models, which provide a necessary input for an overall gasifier model. Both coal and sorbent are materials that have complicated pore structures. The porous conditional moment closure (PCMC) model proves to be adequate for modeling reactive transport through porous media with fixed pore structure. Consumption of coal in the heterogeneous gasification reaction, however, widens the pores and reduces the surface area available for this reaction. At the same time, formation of a carbonate layer narrows the pores in the sorbent material and reduces the reaction rate of CO2 sorption. In both cases the pore structures are affected. Such changes are not taken into account in the existing PCMC model. In this study, we obtain the parameters of the diffusive tracer distribution based on the pore size distribution given by the widely applied random pore model (RPM), while coupling PCMC with RPM. Such coupling allows taking into account changes in pore structure caused by heterogeneous reactions and thus improves the accuracy of these key sub-models.

Keywords gasification      CO2 capture      PCMC      RPM     
Corresponding Author(s): SAULOV D. N.,Email:d.saulov@uq.edu.au   
Issue Date: 05 March 2012
 Cite this article:   
D. N. SAULOV,C. R. CHODANKA,M. J. CLEARY, et al. Coupling the porous conditional moment closure with the random pore model: applications to gasification and CO2 capture[J]. Front Chem Sci Eng, 2012, 6(1): 84-93.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-011-1164-2
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I1/84
Fig.1  Schematic representation of the gasification with CO capture.
Fig.2  Variation in the gaseous reactant concentration in three regimes for the same value of the intrinsic average (schematic view) (a) Kinetics controlled regime(?1); (b) Intermediate regime(~1); (c) Diffusion controlled regime(?1)
Fig.3  Schematic representation of the product layer over the reactive surface.
1 IEA. World energy outlook, 2009
2 Damm D L, Fedorov A G. Conceptual study of distributed CO2 capture and the sustainable carbon economy. Energy Conversion and Management , 2008, 49(6): 1674–1683
doi: 10.1016/j.enconman.2007.11.011
3 Wall T F. Combustion processes for carbon capture. Proceedings of the Combustion Institute , 2007, 31(1): 31–47
doi: 10.1016/j.proci.2006.08.123
4 Aaron D, Tsouris C. Separation of CO2 from flue gas: a review. Separation Science and Technology , 2005, 40(1-3): 321–348
doi: 10.1081/SS-200042244
5 Yeh J T, Pennline H W, Resnik K P. Study of CO2 absorption and desorption in a packed column. Energy & Fuels , 2001, 15(2): 274–278
doi: 10.1021/ef0002389
6 Rochelle G T, Seibert F, Closmann F, Cullinane T, Davis J. CO2 capture by absorption with potassium carbonate. Tech Rep, Texas University, Austin, United States , 2007
7 Versteeg G, van Dijck L, Van Swaaij W. On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions: an overview. Chemical Engineering Communications , 1996, 144(1): 133–158
doi: 10.1080/00986449608936450
8 Hernandez L O G, Gutierrez D L, Collins-Martinez V, Ortiz A L. Synthesis, characterization and high temperature CO2 capture evaluation of Li2ZrO3-Na2ZrO3 mixtures. Journal of New Materials for Electrochemical Systems , 2008, 11(2): 137–142
9 Meratla Z. Combining cryogenic flue gas emission remediation with a CO2/O2 combustion cycle. Energy Conversion and Management , 1997, 38(9999): S147–S152
doi: 10.1016/S0196-8904(96)00261-0
10 da Costa J C D, Lu G Q, Rudolph V. Membrane-based gas separation: Potential energy recovery and greenhouse abatement applications. Developments in chemical engineering and mineral processing , 1997, 5(1-2): 89–100
11 Carapellucci R, Milazzo A. Membrane systems for CO2 capture and their integration with gas turbine plants. Proceedings of the Institution of Mechanical Engineers. Part A, Journal of Power and Energy , 2003, 217(5 A5): 505–517
doi: 10.1243/095765003322407557
12 Bounaceur R, Lape N, Roizard D, Vallieres C, Favre E. Membrane processes for post-combustion carbon dioxide capture: a parametric study. Energy , 2006, 31(14): 2556–2570
doi: 10.1016/j.energy.2005.10.038
13 Smart S, Lin C X C, Ding L, Thambimuthu K, Diniz da Costa J C. Ceramic membranes for gas processing in coal gasification. Energy and Environmental Sciemce , 2010, 3(3): 268–278
doi: 10.1039/b924327e
14 Maroto-Valer M M, Tang Z, Zhang Y. CO2 capture by activated and impregnated anthracites. Fuel Processing Technology , 2005, 86(14-15): 1487–1502
doi: 10.1016/j.fuproc.2005.01.003
15 Song C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today , 2006, 115(1-4): 2–32
doi: 10.1016/j.cattod.2006.02.029
16 Mérel J, Clausse M, Meunier F. Carbon dioxide capture by indirect thermal swing adsorption using 13X zeolite. Environment and Progress , 2006, 25(4): 327–333
doi: 10.1002/ep.10166
17 Zhang J, Webley P A, Xiao P. Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas. Energy Conversion and Management , 2008, 49(2): 346–356
doi: 10.1016/j.enconman.2007.06.007
18 An H, Feng B, Su S. CO2 capture by electrothermal swing adsorption with activated carbon fibre materials. International Journal of Greenhouse Gas Control , 2011, 5(1): 16–25
doi: 10.1016/j.ijggc.2010.03.007
19 Feng B, An H, Tan E. Screening of CO2 adsorbing materials for zero emission power generation systems. Energy & Fuels , 2007, 21(2): 426–434
doi: 10.1021/ef0604036
20 Barker R. Reversibility of the reaction CaCO3 reversible reaction CaO plus CO2. Journal of Applied Chemistry and Biotechnology , 1973, 23(10): 733–742
doi: 10.1002/jctb.5020231005
21 Abanades J C. The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3. Chemical Engineering Journal , 2002, 90(3): 303–306
doi: 10.1016/S1385-8947(02)00126-2
22 Abanades J C, Alvarez D. Conversion limits in the reaction of CO2 with lime. Energy & Fuels , 2003, 17(2): 308–315
doi: 10.1021/ef020152a
23 Feng B, Liu W, Li X, An H. Overcoming the problem of loss-in-capacity of calcium oxide in CO2 capture. Energy & Fuels , 2006, 20(6): 2417–2420
doi: 10.1021/ef060258w
24 Peirano E, Delloume V, Leckner B. Two- or three-dimensional simulations of turbulent gas-solid flows applied to fluidization. Chemical Engineering Science , 2001, 56(16): 4787–4799
doi: 10.1016/S0009-2509(01)00141-5
25 Gao K, Wu J, Wang Y, Zhang D. Bubble dynamics and its effect on the performance of a jet fluidised bed gasifier simulated using CFD. Fuel , 2006, 85(9): 1221–1231
doi: 10.1016/j.fuel.2005.11.013
26 Gr?bner M, Ogriseck S, Meyer B. Numerical simulation of coal gasification at circulating fluidised bed conditions. Fuel Processing Technology , 2007, 88(10): 948–958
doi: 10.1016/j.fuproc.2007.05.006
27 Yu L, Lu J, Zhang X, Zhang S. Numerical simulation of the bubbling fluidized bed coal gasification by the kinetic theory of granular flow (KTGF). Fuel , 2007, 86(5-6): 722–734
doi: 10.1016/j.fuel.2006.09.008
28 Almuttahar A, Taghipour F. Computational fluid dynamics of high density circulating fluidized bed riser: study of modeling parameters. Powder Technology , 2008, 185(1): 11–23
doi: 10.1016/j.powtec.2007.09.010
29 Hartge E U, Ratschow L, Wischnewski R, Werther J. CFD-simulation of a circulating fluidized bed riser. Particuology , 2009, 7(4): 283–296
doi: 10.1016/j.partic.2009.04.005
30 Armstrong L M, Gu S, Luo K H. Effects of limestone calcination on the gasification processes in a BFB coal gasifier. Chemical Engineering Journal , 2011, 168(2): 848–860
doi: 10.1016/j.cej.2011.01.102
31 Zhou W, Zhao C S, Duan L B, Qu C R, Chen X P. Two-dimensional computational fluid dynamics simulation of coal combustion in a circulating fluidized bed combustor. Chemical Engineering Journal , 2011, 166(1): 306–314
doi: 10.1016/j.cej.2010.09.048
32 Gidaspow D. Multiphase flow and fluidization: continuum and kinetic theory descriptions. London: Academic Press Limited, 1994
33 Klimenko A Y, Abdel-Jawad M M. Conditional methods for continuum reacting flows in porous media. Proceedings of the Combustion Institute , 2007, 31(2): 2107–2115
doi: 10.1016/j.proci.2006.07.218
34 Quintard M, Whitaker S. Transport in ordered and disordered porous media. Transport inPorous Media , 1994, 14: 163–177
35 Vladimirov I G, Klimenko A Y. Tracing diffusion in porous media with fractal properties. Multiscale Modeling and Simulation , 2010, 8(4): 1178–1211
doi: 10.1137/090760234
36 Bhatia S K, Perlmutter D D. A random pore model for fluid-solid reactions: I. Isothermal, kinetic control. AIChE Journal. American Institute of Chemical Engineers , 1980, 26(3): 379–386
doi: 10.1002/aic.690260308
37 Bhatia S K, Perlmutter D D. A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AIChE Journal. American Institute of Chemical Engineers , 1981, 27(2): 247–254
doi: 10.1002/aic.690270211
38 Su J L, Perlmutter D D. Effect of pore structure on particle ignition during exothermic gasification reactions. AIChE Journal. American Institute of Chemical Engineers , 1985, 31(1): 157–160
doi: 10.1002/aic.690310121
39 Liu G, Benyon P, Benfell K E, Bryant G W, Tate A G, Boyd R K, Harris D J, Wall T F. The porous structure of bituminous coal chars and its influence on combustion and gasification under chemically controlled Conditions. Fuel , 2000, 79(6): 617–626
doi: 10.1016/S0016-2361(99)00185-4
40 Ochoa J, Cassanello M C, Bonelli P R, Cukierman A L. CO2 gasification of Argentinean coal chars: A kinetic characterization. Fuel Processing Technology , 2001, 74(3): 161–176
doi: 10.1016/S0378-3820(01)00235-1
41 Kajitani S, Hara S, Matsuda H. Gasification rate analysis of coal char with a pressurized drop tube furnace. Fuel , 2002, 81(5): 539–546
doi: 10.1016/S0016-2361(01)00149-1
42 Feng B, Bhatia S K. Variation of the pore structure of coal chars during gasification. Carbon , 2003, 41(3): 507–523
doi: 10.1016/S0008-6223(02)00357-3
43 Kajitani S, Suzuki N, Ashizawa M, Hara S. CO2 gasification rate analysis of coal char in entrained flow coal gasifier. Fuel , 2006, 85(2): 163–169
doi: 10.1016/j.fuel.2005.07.024
44 Chodankar C R, Feng B, Ran J, Klimenko A Y. Kinetic study of the gasification of an Australian bituminous coal char in carbon dioxide. Asia-Pacific Journal of Chemical Engineering , 2010, 5(3): 413–419
doi: 10.1002/apj.269
45 Klimenko A Y, Bilger R W. Conditional moment closure for turbulent combustion. Progress in Energy and Combustion Science , 1999, 25(6): 595–687
doi: 10.1016/S0360-1285(99)00006-4
46 Gray W G, Lee P C Y. On the theorems for local volume averaging of multiphase systems. International Journal of Multiphase Flow , 1977, 3(4): 333–340
doi: 10.1016/0301-9322(77)90013-1
47 Adler P. In: Fractal Approach to Heterogeneous Chemistry . Anvir D, ed. New York: John Wiley & Sons, 1989
48 Lenormand R. Applications of fractal concepts in petroleum engineering. Physica D. Nonlinear Phenomena , 1989, 38(1-3): 230–234
doi: 10.1016/0167-2789(89)90198-X
49 Barton C C, La Pointe P. R. Fractals in Petroleum Geology and Earth Processes. New York: Plenum Press, 1995
50 Devaud C B, Bilger R W, Liu T. A new method of modeling the conditional scalar dissipation rate. Physics of Fluids , 2004, 16(6): 2004–2111
doi: 10.1063/1.1699108
51 Bhatia S K, Perlmutter D D. Effect of the product layer on the kinetics of the CO2-lime reaction. AIChE Journal , 1983, 29(1): 79–86
doi: 10.1002/aic.690290111
[1] Yujie Ban, Meng Zhao, Weishen Yang. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 188-215.
[2] Xuantao Wu, Jie Wang. Intrinsic kinetics and external diffusion of catalytic steam gasification of fine coal char particles under pressurized and fluidized conditions[J]. Front. Chem. Sci. Eng., 2019, 13(2): 415-426.
[3] Giorgia De Guido, Matteo Compagnoni, Laura A. Pellegrini, Ilenia Rossetti. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion[J]. Front. Chem. Sci. Eng., 2018, 12(2): 315-325.
[4] Stefania Moioli, Laura A. Pellegrini, Paolo Vergani, Fabio Brignoli. Study of the robustness of a low-temperature dual-pressure process for removal of CO2 from natural gas[J]. Front. Chem. Sci. Eng., 2018, 12(2): 209-225.
[5] Huimei Yu, Xiaoxing Wang, Zhu Shu, Mamoru Fujii, Chunshan Song. Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures[J]. Front. Chem. Sci. Eng., 2018, 12(1): 83-93.
[6] Alexander B. Koven, Shitang S. Tong, Ramin R. Farnood, Charles Q. Jia. Alkali-thermal gasification and hydrogen generation potential of biomass[J]. Front. Chem. Sci. Eng., 2017, 11(3): 369-378.
[7] Elaheh Mehrvarz, Ali A. Ghoreyshi, Mohsen Jahanshahi. Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2capture enhancement[J]. Front. Chem. Sci. Eng., 2017, 11(2): 252-265.
[8] Xue Zou,Jin Li. On the fouling mechanism of polysulfone ultrafiltration membrane in the treatment of coal gasification wastewater[J]. Front. Chem. Sci. Eng., 2016, 10(4): 490-498.
[9] A. A. Olajire. CO2 capture by aqueous ammonia process in the clean development mechanism for Nigerian oil industry[J]. Front Chem Sci Eng, 2013, 7(3): 366-380.
[10] Qiang XIAO, Xiaodan TANG, Yefeng LIU, Yijun ZHONG, Weidong ZHU. Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures[J]. Front Chem Sci Eng, 2013, 7(3): 297-302.
[11] Chunyu LI, Jiantao ZHAO, Yitian FANG, Yang WANG. Effect of pressure on gasification reactivity of three Chinese coals with different ranks[J]. Front Chem Eng Chin, 2010, 4(4): 385-393.
[12] Yiqun WANG, Lifeng YAN. CFD based combustion model for sewage sludge gasification in a fluidized bed[J]. Front Chem Eng Chin, 2009, 3(2): 138-145.
[13] GUAN Yu, PEI Aixia, GUO Liejin. Hydrogen production by catalytic gasification of cellulose in supercritical water[J]. Front. Chem. Sci. Eng., 2008, 2(2): 176-180.
[14] KONG Xiaoying, WU Chuangzhi, YUAN Zhenhong, MA Longlong, CHANG Jie, LÜ Pengmei. Modeling and simulation of biomass air-steam gasification in a fluidized bed[J]. Front. Chem. Sci. Eng., 2008, 2(2): 209-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed