Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (1) : 53-57    https://doi.org/10.1007/s11705-011-1165-1
RESEARCH ARTICLE
Low temperature synthesis of visible light responsive rutile TiO2 nanorods from TiC precursor
John TELLAM, Xu ZONG, Lianzhou WANG()
ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering and AIBN, the University of Queensland, Brisbane 4072, Australia
 Download: PDF(231 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A nano-structured TiO2 with rutile phase was synthesized by using the hydrothermal method from a titanium carbide (TiC) nano-powder precursor at low temperature to produce a stable visible light responsive photocatalyst. The rutile phase was formed at temperature as low as 100°C, and both synthesis time and temperature affected its formation. The rutile particles showed a faceted nano-rod structure, and were tested for absorption and photo-degradation ability under visible light. Particles with shorter synthesis times showed higher visible light absorption and corresponding photo-degradation ability, while those synthesized at lower temperatures had lower, but still evident, degradation ability under visible light.

Keywords photocatalysis      rutile      TiO2      hydrothermal      visible      titanium carbide     
Corresponding Author(s): WANG Lianzhou,Email:l.wang@uq.edu.au   
Issue Date: 05 March 2012
 Cite this article:   
John TELLAM,Xu ZONG,Lianzhou WANG. Low temperature synthesis of visible light responsive rutile TiO2 nanorods from TiC precursor[J]. Front Chem Sci Eng, 2012, 6(1): 53-57.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-011-1165-1
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I1/53
SampleReaction time/hReaction temperature /°CXRD particle size /nm
1518026.7
21018031.2
31518035.9
42018037.6
52010010.3
62014026.2
72016031.2
Tab.1  Synthesis parameters and particle sizes of TiO estimated from XRD patterns
Fig.1  X-ray diffraction patterns of TiO samples prepared at different reaction temperatures and time (A) (a) 100°C, 20 h, (b) 140°C, 20 h, (c) 160°, C 20 h, (d) 180°C, 20 h; (B) (a) 180°C, 5 h, (b) 180°C, 10 h, (c) 180°C, 15 h, (d) 180°C, 20 h
Fig.2  TEM images of (a) TiC precursor, and TiO samples prepared at (b) 100°C, 20 h, (c) 140°C, 20 h, (d) 160°C, 20 h, (e) 180°C, 5 h, (f) 180°C, 10 h, (g) 180°C, 15 h, and (h) 180°C, 20 h. The scale bars are 200 nm
Fig.3  UV-Vis diffuse reflectance spectra of TiO samples prepared at different reaction temperatures and time (A) (a) 100°C, 20 h; (b) 140°C, 20 h; (c) 160°C, 20 h; (d) 180°C, 20 h; (B) (a) P25, TiO; (b) 180°C, 5 h; (c) 180°C, 10 h; (d) 180°C, 15 h; (e) 180°C, 20 h
Fig.4  Time courses of pollutant degradation reactions under visible light on TiO samples prepared at (a) 100°C, 20 h, (b) 140°C, 20 h, (c) 160°C, 20 h, (d) 180°C, 5 h, (e) 180°C, 10 h, (f) 180°C, 15 h, and (g) 180°C, 20 h
1 Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews , 2008, 38(1): 253-278
doi: 10.1039/b800489g pmid:19088977
2 Sunada K, Watanabe T, Hashimoto K. Studies on photokilling of bacteria on TiO2 thin film. Journal of Photochemistry and Photobiology A Chemistry , 2003, 156(1-3): 227-233
doi: 10.1016/S1010-6030(02)00434-3
3 Kim B, Kim D, Cho D, Cho S. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere , 2003, 52(1): 277-281
doi: 10.1016/S0045-6535(03)00051-1 pmid:12729712
4 Seo J W, Chung H W, Kim M Y, Lee J G, Choi I H, Cheon J W. Development of water-soluble single-crystalline TiO2 nanoparticles for photocatalytic cancer-cell treatment. Small , 2007, 3(5): 850-853
doi: 10.1002/smll.200600488 pmid:17385208
5 Chen X B, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews , 2007, 107(7): 2891-2959
doi: 10.1021/cr0500535 pmid:17590053
6 Zhao J C, Chen C C, Ma W H. Photocatalytic degradation of organic pollutants under visible light irradiation. Topics in Catalysis , 2005, 35(3-4): 269-278
doi: 10.1007/s11244-005-3834-0
7 Langford J I, Wilson A J C. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. Journal of Applied Crystallography , 1978, 11(2): 102-113
doi: 10.1107/S0021889878012844
8 Czanderna A W, Rao C N R, Honig J M. The anatase-rutile transition. Part 1. Kinetics of the transformation of pure anatase. Transactions of the Faraday Society , 1958, 54: 1069-1073
doi: 10.1039/tf9585401069
9 Mattioli G, Filippone F, Alippi P, Amore Bonapasta A. Ab initio study of the electronic states induced by oxygen vacancies in rutile and anatase TiO2. Physical Review B: Condensed Matter and Materials Physics , 2008, 78(24): 241201
doi: 10.1103/PhysRevB.78.241201
10 Zuo F, Wang L, Wu T, Zhang Z Y, Borchardt D, Feng P Y. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. Journal of the American Chemical Society , 2010, 132(34): 11856-11857
doi: 10.1021/ja103843d pmid:20687606
[1] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[2] Tongzhou Lu, Yongzheng Zhang, Chun Cheng, Yanbin Wang, Yongming Zhu. One-step synthesis of recoverable CuCo2S4 anode material for high-performance Li-ion batteries[J]. Front. Chem. Sci. Eng., 2020, 14(4): 595-604.
[3] Cyrine Ayed, Wei Huang, Kai A. I. Zhang. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media[J]. Front. Chem. Sci. Eng., 2020, 14(3): 397-404.
[4] Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light[J]. Front. Chem. Sci. Eng., 2019, 13(4): 665-671.
[5] Navid Azizi, Mojgan Isanejad, Toraj Mohammadi, Reza M. Behbahani. Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 517-530.
[6] Dongjie Yang, Shengyu Wang, Ruisheng Zhong, Weifeng Liu, Xueqing Qiu. Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings[J]. Front. Chem. Sci. Eng., 2019, 13(1): 59-69.
[7] Andrea P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis[J]. Front. Chem. Sci. Eng., 2018, 12(4): 878-892.
[8] Dong Yang, Xiaoyan Zou, Yuanyuan Sun, Zhenwei Tong, Zhongyi Jiang. Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction[J]. Front. Chem. Sci. Eng., 2018, 12(3): 440-449.
[9] Tianjie Liu, Hao Fan, Yanxia Xu, Xingfu Song, Jianguo Yu. Effects of metal ions on the morphology of calcium sulfate hemihydrate whiskers by hydrothermal method[J]. Front. Chem. Sci. Eng., 2017, 11(4): 545-553.
[10] Yu Yang, Hassan Javed, Danning Zhang, Deyi Li, Roopa Kamath, Kevin McVey, Kanwartej Sra, Pedro J.J. Alvarez. Merits and limitations of TiO2-based photocatalytic pretreatment of soils impacted by crude oil for expediting bioremediation[J]. Front. Chem. Sci. Eng., 2017, 11(3): 387-394.
[11] Kanchapogu Suresh, G. Pugazhenthi, R. Uppaluri. Preparation and characterization of hydrothermally engineered TiO2-fly ash composite membrane[J]. Front. Chem. Sci. Eng., 2017, 11(2): 266-279.
[12] Nadir Abbas, Godlisten N. Shao, Syed M. Imran, Muhammad S. Haider, Hee Taik Kim. Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse[J]. Front. Chem. Sci. Eng., 2016, 10(3): 405-416.
[13] Nadeen Al-Janabi,Abdullatif Alfutimie,Flor R. Siperstein,Xiaolei Fan. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework[J]. Front. Chem. Sci. Eng., 2016, 10(1): 103-107.
[14] A. M. Bakhshayesh,S. S. Azadfar. Orderly decorated nanostructural photoelectrodes with uniform spherical TiO2 particles for dye-sensitized solar cells[J]. Front. Chem. Sci. Eng., 2015, 9(4): 532-540.
[15] Xiaojie Zhang,Lei Wang,Shuqing Chen,Yi Huang,Zhuonan Song,Miao Yu. Facile synthesis and enhanced visible-light photocatalytic activity of Ti3+-doped TiO2 sheets with tunable phase composition? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 349-358.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed