Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (1) : 13-26    https://doi.org/10.1007/s11705-011-1168-y
REVIEW ARTICLE
Advancement in materials for energy-saving lighting devices
Tak H. KIM, Wentai WANG, Qin LI()
Department of Chemical Engineering, Curtin University, Perth 6845, Australia; Present address: Environmental Engineering, Griffith University, Brisbane 4111, Australia
 Download: PDF(607 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This review provides a comprehensive account of energy efficient lighting devices, their working principles and the advancement of these materials as an underpinning to the development of technology. Particular attention has been given to solid state lighting devices and their applications since they have attracted the most interest and are the most promising. Solid state lighting devices including white light emitting diodes (LEDs), organic LEDs (OLEDs), quantum-dot LEDs (QLEDs) and carbon-dot LEDs (CLEDs) are promising energy efficient lighting sources for displays and general lighting. However there is no universal solution that will give better performance and efficiency for all types of applications. LEDs are replacing traditional lamps for both general lighting and display applications, whereas OLEDs are finding their own special applications in various areas. QLEDs and CLEDs have advantages such as high quantum yields, narrow emission spectra, tunable emission spectra and good stability over OLEDs, so applications for these devices are being extended to new types of lighting sources. There is a great deal of research on these materials and their processing technologies and the commercial viability of these technologies appears strong.

Keywords energy-saving lighting devices      solid state lighting devices     
Corresponding Author(s): LI Qin,Email:Q.Li@curtin.edu.au; qin.li@griffith.edu.cn   
Issue Date: 05 March 2012
 Cite this article:   
Tak H. KIM,Wentai WANG,Qin LI. Advancement in materials for energy-saving lighting devices[J]. Front Chem Sci Eng, 2012, 6(1): 13-26.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-011-1168-y
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I1/13
1 Kramer T. Seeing the Light. Evonik Magazine , 2010, 2: 12-19
2 Khan N, Abas N. Comparative study of energy saving light sources. Renewable & Sustainable Energy Reviews , 2011, 15(1): 296-309
doi: 10.1016/j.rser.2010.07.072
3 Park J, Lim S. LCD backlights, light sources, and flat fluorescent lamps. Journal of the Society for Information Display , 2007, 15(12): 1109-1114
doi: 10.1889/1.2825100
4 Lin M, Ho W, Shih F, Chen D, Wu Y. A cold-cathode fluorescent lamp driver circuit with synchronous primary-side dimming control. IEEE Transactions on Industrial Electronics , 1998, 45(2): 249-255
doi: 10.1109/41.681223
5 Jacob B. Lamps for improving the energy efficiency of domestic lighting. Lighting Research & Technology , 2009, 41(3): 219-228
doi: 10.1177/1477153509339610
6 Arik M, Setlur A. Environmental and economical impact of LED lighting systems and effect of thermal management. International Journal of Energy Research , 2010, 34(13): 1195-1204
doi: 10.1002/er.1639
7 Mooney J. Fluorescent Lamps. Transactions of the Kansas Academy of Science , 1951, 54(4): 504-505
doi: 10.2307/3626209
8 Nakamura H. Recent development of white LEDS and solid state lighting. Light & Engineering , 2009, 17(4): 13-17
9 Duagal A, Heller C, Shiang J, Liu J, Lewis L.Solution-processed organic light-emitting diodes for lighting. Journal of display technology , 2007, 3(2): 184-192
10 Kim S O, Lee K H, Kim G Y, Seo J H, Kim Y K, Yoon S S. A highly efficient deep blue fluorescent OLED based on diphenylaminofluorenylstyrene-containing emitting materials. Synthetic Metals , 2010, 160(11-12): 1259-1265
doi: 10.1016/j.synthmet.2010.03.020
11 Hewitt P C. Electric gas lamps and gas electrical resistance phenomena. Transactions of the American Institute of Electrical Engineers , 1902, XIX: 59-65
doi: 10.1109/T-AIEE.1902.4763958
12 Raposo C, Windm?ller C C, Dur?o W A Jr. Mercury speciation in fluorescent lamps by thermal release analysis. Waste Management (New York, N.Y.) , 2003, 23(10): 879-886
doi: 10.1016/S0956-053X(03)00089-8 pmid:14614922
13 Timothy BU S. Patent, 2001038264, 2001-04-12
14 Koo H, Chang C, Cho N, Lee J. Development and application of less-mercury flat fluorescent lamps for backlights and general lighting. Journal of the Society for Information Display , 2008, 16(7): 759-764
doi: 10.1889/1.2953483
15 Thaler E, Wilson R, Doughty D, Beers W. Measurement of mecury bound in the glass envelope during operation of fluorescent lamps. Journal of the Electrochemical Society , 1995, 142(6): 1968-1970
doi: 10.1149/1.2044224
16 Chang T C, You S J, Yu B S, Chen C M, Chiu Y C. Treating high-mercury-containing lamps using full-scale thermal desorption technology. Journal of Hazardous Materials , 2009, 162(2-3): 967-972
doi: 10.1016/j.jhazmat.2008.05.129 pmid:18603361
17 Della P P. US Patent, 3657589, 1927-04-18
18 Elenbaas W. Fluorescent lamps. 2nd . London: Macmillan, 1971
19 Lin D, Yan W. Modeling of cold cathode fluorescent lamps (CCFLs) with realistic electrode profile. IEEE Transactions on Power Electronics , 2010, 25(3): 699-709
doi: 10.1109/TPEL.2009.2035359
20 Alberts I, Barratt D, Ray A. Hollow cathode effect in cold cathode fluorescent lamps: a review. Journal of Display Technology , 2010, 6(2): 52-59
doi: 10.1109/JDT.2009.2031924
21 Patent L E E C L. US2005057143, 2005-11-08
22 Guangsup Cho, Lee J Y, Lee D H, Kim S B, Song H S, Jehuan Koo, Kim B S, Kang J G, Choi E H, Lee U W, Yang S C, Verboncoeur J P. Glow discharge in the external electrode fluorescent lamp. IEEE Transactions on Plasma Science , 2005, 33(4): 1410-1415
doi: 10.1109/TPS.2005.852434
23 Cho K, Oh W, Moon G, Park M, Lee S. Study on the equivalent model of an external electrode fluorescent lamp based on equivalent resistance and capacitance variation. Journal of Power Electronics , 2007, 7(1): 38-43
24 Lim D S. US Patent, 2006126332, 2006-06-15
25 Hironori I. Japanese Patent, 2004079270, 2004-03-11
26 Jinno M, Okamoto M, Takeda M, Motomura H. Luminance and efficacy improvement of low-pressure xenon pulsed fluorescent lamps by using an auxiliary external electrode. Journal of Physics. D, Applied Physics , 2007, 40(13): 3889-3895
doi: 10.1088/0022-3727/40/13/S08
27 Hu W, Liu Z, Yang M. Luminescence characteristics of mercury-free flat fluorescent lamp with arc-shape anodes. IEEE Transactions on Consumer Electronics , 2010, 56(4): 2631-2635
doi: 10.1109/TCE.2010.5681150
28 Jung J C, Lee J K, Seo I W, Oh B J, Whang K W. Electro-optic characteristics and areal selective dimming method for a new highly efficient mercury-free flat fluorescent lamp (MFFL). Journal of Physics. D, Applied Physics , 2009, 42(12): 125205
doi: 10.1088/0022-3727/42/12/125205
29 Winsor M, Flynn J. 16.1: Uniform discharge hybrid flat fluorescent lamp (HFFL). SID Symposium Digest of Technical Papers , 2007, 38(1): 979-982
30 Uhrlandt D, Bussiahn R, Gorchakov S, Lange H, Loffhagen D, Notzold D. Low-pressure mercury-free plasma light sources: experimental and theoretical perspectives. Journal of Physics. D, Applied Physics , 2005, 38(17): 3318-3325
doi: 10.1088/0022-3727/38/17/S37
31 Shur M, Zukauskas A. Solid-state lighting: toward superior illumination. Proceedings of the IEEE , 2005, 93(10): 1691-1703
doi: 10.1109/JPROC.2005.853537
32 Holonyak N, Bevacqua S F. Coherent (visible) light emission from Ga(As 1-xP x) junctions. Applied Physics Letters , 1962, 1(4): 82-83
doi: 10.1063/1.1753706
33 Nakamura S, Senoh N, Iwasa N, Nagahama S. High-brightness ingan blue, green and yellow light-emitting-diodes with quantum-well structures. Japanese Journal of Applied Physics , 1995, 34(Part 2, No. 7A 7A): L797-L799
doi: 10.1143/JJAP.34.L797
34 Nakamura S. III-V nitride based light-emitting devices. Solid State Communications , 1997, 102(2-3): 237-248
doi: 10.1016/S0038-1098(96)00722-3
35 Li H, Zhang C, Li D, Duan Y. Simulation of transform for external quantum efficiency and power efficiency of electroluminescent devices. Journal of Luminescence , 2007 122-123: 626-628
36 Lee S Y, Kwon J W, Kim H S, Choi M S, Byun K S. New design and application of high efficiency LED driving system for RGB-LED backlight in LCD pisplay. In: Power Electronics Specialists Conference , 2006, PESC ’06. 37th IEEE, 2006
37 Chiu H, Cheng S. LED backlight driving system for large-scale LCD panels. IEEE Transactions on Industrial Electronics , 2007, 54(5): 2751-2760
doi: 10.1109/TIE.2007.899938
38 Cho H, Kwon O. A local dimming algorithm for low power LCD TVs using edge-type LED backlight. IEEE Transactions on Consumer Electronics , 2010, 56(4): 2054-2060
doi: 10.1109/TCE.2010.5681071
39 Bernanose A. Electroluminescence of organic compounds. British Journal of Applied Physics , 1955, 6(S4): S54-S55
doi: 10.1088/0508-3443/6/S4/319
40 Tang C, Vanslyke S. Organic electroluminescent diodes. Applied Physics Letters , 1987, 51(12): 913-915
doi: 10.1063/1.98799
41 Burroughes J, Bradley D, Brown A, Marks R, Mackay K, Friend R H, Burns P L, Holmes A B. Light-emitting-diodes based on conjugated polymers. Nature , 1990, 347(6293): 539-541
doi: 10.1038/347539a0
42 Mitschke U, Bauerle P. The electroluminescence of organic materials. Journal of Materials Chemistry , 2000, 10(7): 1471-1507
doi: 10.1039/a908713c
43 Zhou G, Wong W, Suo S. Recent progress and current challenges in phosphorescent white organic light-emitting diodes (WOLEDs). Journal of Photochemistry and Photobiology, C, Photochemistry Reviews , 2010, 11(4): 133-156
doi: 10.1016/j.jphotochemrev.2011.01.001
44 Hatwar T K. European Patent, 1492167, 2004-06-14
45 Kisan H T. US Patent, 2007228938, 2007-10-04
46 Lee Y, Ju B, Jeon W, Kwon J, Park O, Yu J, Chin B D. Balancing the white emission of OLED by a design of fluorescent blue and phosphorescent green/red emitting layer structures. Synthetic Metals , 2009, 159(3-4): 325-330
doi: 10.1016/j.synthmet.2008.09.011
47 Shi J. US Patent, 5935721, 1999-08-10
48 Norimasa Y. European Patent, 2299510, 2011-03-23
49 Tang C W. US Patent, 4769292, 1988-09-06
50 Alsalhi M S, Alam J, Dass L A, Raja M. Recent advances in conjugated polymers for light emitting devices. International Journal of Molecular Sciences , 2011, 12(3): 2036-2054
doi: 10.3390/ijms12032036 pmid:21673938
51 Kim W Y. Recent developments and prospects of organic electroluminescent display technology. Journal of the Korean Physical Society , 1999, 35: S1115-S1119
52 Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Santos D A D, Brdas J L, Lgdlund M, Salaneck W R. Electroluminescence in conjugated polymers. Nature , 1999, 397(6715): 121-128
doi: 10.1038/16393
53 Alan J. Heeger N S S, Ebinazar B N. Semiconducting and metallic polymers. Oxford: Oxford University Press, 2010
54 Kido J, Kimura M, Nagai K. Multilayer white light-emitting organic electroluminescent device. Science , 1995, 267(5202): 1332-1334
doi: 10.1126/science.267.5202.1332 pmid:17812607
55 Cheng G, Mazzeo M, Rizzo A, Li Y, Duan Y, Gigli G. White light-emitting devices based on the combined emission from red CdSe/ZnS quantum dots, green phosphorescent, and blue fluorescent organic molecules. Applied Physics Letters , 2009, 94(24): 243506
doi: 10.1063/1.3157131
56 Chu H Y, Lee J I, Do L M, Zyung T, Jung B J, Shim H K, Jang J. Organic white light emitting devices with an RGB stacked multilayer structure. Molecular Crystals and Liquid Crystals , 2003, 405(1): 119-125
doi: 10.1080/15421400390264009
57 Ko C W, Tao Y T. Bright white organic light-emitting diode. Applied Physics Letters , 2001, 79(25): 4234-4236
doi: 10.1063/1.1425454
58 Ping C, Zhang L, Duan Y, Xie W, Zhao Y, Hou J, Liu S, Li B. Efficient white organic light-emitting devices based on blue, orange, red phosphorescent dyes. Journal of Physics. D, Applied Physics , 2009, 42(5): 055115
doi: 10.1088/0022-3727/42/5/055115
59 D'Andrade B, Forrest S. White organic light-emitting devices for solid-state lighting. Advanced Materials (Deerfield Beach, Fla.) , 2004, 16(18): 1585-1595
doi: 10.1002/adma.200400684
60 Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, Leo K. White organic light-emitting diodes with fluorescent tube efficiency. Nature , 2009, 459(7244): 234-238
doi: 10.1038/nature08003 pmid:19444212
61 Su S J. Highly efficient organic blue-and white-light-emitting devices having a carrier-and exciton-confining structure for reduced efficiency roll-off. Advanced Materials (Deerfield Beach, Fla.) , 2008, 20(21): 4189
62 Tsuboi T. Recent advances in white organic light emitting diodes with a single emissive dopant. Journal of Non-Crystalline Solids , 2010, 356(37-40): 1919-1927
doi: 10.1016/j.jnoncrysol.2010.05.034
63 Murray C, Norris D, Bawendi M. Synthesis and characterization of nearly monodisperse CDE (E = S, SE, TE) Semiconductor nanocrystalllites. Journal of the American Chemical Society , 1993, 115(19): 8706-8715
doi: 10.1021/ja00072a025
64 Colvin V, Schlamp M, Alivisatos A. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature , 1994, 370(6488): 354-357
doi: 10.1038/370354a0
65 Steigerwald M, Rice C. Organometallic synthesis of manganese telluride-isolation and characterization of [(Et3P)2(CO)3MNTE]2. Journal of the American Chemical Society , 1988, 110(13): 4228-4231
doi: 10.1021/ja00221a023
67 Katari J, Colvin V, Alivisatos A. X-ray photoelectron-spectroscopy of CDSE nanocrystals with applications to studies of the nanocrystal surface. Journal of Physical Chemistry , 1994, 98(15): 4109-4117
doi: 10.1021/j100066a034
68 Lee J, Sundar V, Heine J, Bawendi M, Jensen K. Full color emission from II-VI semiconductor quantum dot-polymer composites. Advanced Materials (Deerfield Beach, Fla.) , 2000, 12(15): 1102-1105
doi: 10.1002/1521-4095(200008)12:15<1102::AID-ADMA1102>3.0.CO;2-J
69 Jang E, Jun S, Jang H, Lim J, Kim B, Kim Y. White-light-emitting diodes with quantum dot color converters for display backlights. Advanced Materials (Deerfield Beach, Fla.) , 2010, 22(28): 3076-3080
doi: 10.1002/adma.201000525 pmid:20517873
70 Li Y, Rizzo A, Mazzeo M, Carbone L, Manna L, Cingolani R, Gigli G. White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter. Journal of Applied Physics , 2005, 97(11): 113501
doi: 10.1063/1.1921341
71 Torriss B, Haché A, Gauvin S. White light-emitting organic device with electroluminescent quantum dots and organic molecules. Organic Electronics , 2009, 10(8): 1454-1458
doi: 10.1016/j.orgel.2009.08.007
72 Kang B H, Seo J S, Jeong S, Lee J, Han C S, Kim D E, Kim K J, Yeom S H, Kwon D H, Kim H R, Kang S W. Highly efficient hybrid light-emitting device using complex of CdSe/ZnS quantum dots embedded in co-polymer as an active layer. Optics Express , 2010, 18(17): 18303-18311
doi: 10.1364/OE.18.018303 pmid:20721223
73 Xuan Y, Pan D, Zhao N, Ji X, Ma D. White electroluminescence from a poly(N-vinylcarbazole) layer doped with CdSe/CdS core-shell quantum dots. Nanotechnology , 2006, 17(19): 4966-4969
doi: 10.1088/0957-4484/17/19/032
74 Coe S, Woo W K, Bawendi M, Bulovi? V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature , 2002, 420(6917): 800-803
doi: 10.1038/nature01217 pmid:12490945
75 Kim T, Cho K, Lee E, Lee S, Chae J, Kim J, Kim D H, Kwon J Y, Amaratunga G, Lee S Y, Choi B L, Kuk Y, Kim J M, Kim K. Full-colour quantum dot displays fabricated by transfer printing. Nature Photonics , 2011, 5(3): 176-182
doi: 10.1038/nphoton.2011.12
76 Talapin D V, Lee J S, Kovalenko M V, Shevchenko E V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chemical Reviews , 2010, 110(1): 389-458
doi: 10.1021/cr900137k pmid:19958036
77 Zorn M, Bae W K, Kwak J, Lee H, Lee C, Zentel R, Char K. Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices. ACS Nano , 2009, 3(5): 1063-1068
doi: 10.1021/nn800790s pmid:19845366
78 Gopal A, Hoshino K, Kim S, Zhang X, Hoshino K, Kim S, Zhang X. Multi-color colloidal quantum dot based light emitting diodes micropatterned on silicon hole transporting layers. Nanotechnology , 2009, 20(23): 235201
doi: 10.1088/0957-4484/20/23/235201 pmid:19448295
79 Caruge J, Halpert J, Wood V, Bulovic V, Bawendi M. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nature Photonics , 2008, 2(4): 247-250
doi: 10.1038/nphoton.2008.34
80 Kang S, Huh H H, Son K C, Lee C S, Kim K H, Huh C, Kim E T. Light-emitting diode applications of colloidal CdSe/ZnS quantum dots embedded in TiO2-delta thin film. Physica Status Solidi. B, Basic Research , 2009, 246(4): 889-892
doi: 10.1002/pssb.200880615
81 Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H, Luo P G, Yang H, Kose M E, Chen B, Veca L M, Xie S Y. Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society , 2006, 128(24): 7756-7757
doi: 10.1021/ja062677d pmid:16771487
82 Li Q, Ohulchanskyy T, Liu R, Koynov K, Wu D, Best A, Kumar R, Bonoiu A, Prasad P N. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. Journal of Physical Chemistry, C , 2010, 114(28): 12062-12068
doi: 10.1021/jp911539r
83 Yang S T, Wang X, Wang H, Lu F, Luo P G, Cao L, Meziani M J, Liu J H, Liu Y, Chen M, Huang Y, Sun Y P. Carbon dots as nontoxic and high-performance fluorescence imaging agents. Journal of Physical Chemistry, C , 2009, 113(42): 18110-18114
doi: 10.1021/jp9085969 pmid:20357893
84 Yang S T, Cao L, Luo P G, Lu F, Wang X, Wang H, Meziani M J, Liu Y, Qi G, Sun Y P. Carbon dots for optical imaging in vivo. Journal of the American Chemical Society , 2009, 131(32): 11308-11309
doi: 10.1021/ja904843x pmid:19722643
85 Wang F, Kreiter M, He B, Pang S, Liu C Y. Synthesis of direct white-light emitting carbogenic quantum dots. Chemical Communications , 2010, 46(19): 3309-3311
doi: 10.1039/c002206c pmid:20372692
86 Wang F, Chen Y H, Liu C Y, Ma D G. White light-emitting devices based on carbon dots’ electroluminescence. Chemical Communications , 2011, 47(12): 3502-3504
doi: 10.1039/c0cc05391k pmid:21311781
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed