Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (1) : 47-52    https://doi.org/10.1007/s11705-011-1170-4
RESEARCH ARTICLE
Preparation of Cu/ZrO2 catalysts for methanol synthesis from CO2/H2
Xinmei LIU(), Shaofen BAI, Huidong ZHUANG, Zifeng YAN
State Key Laboratory for Heavy Oil Processing, Key Laboratory of Catalysis (China National Petroleum Corporation), China University of Petroleum, Qingdao 266555, China
 Download: PDF(244 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cu/ZrO2 catalysts for methanol synthesis from CO2/H2 were respectively prepared by deposition coprecipitation (DP) and solid state reaction (SR) methods. There is an intimate interaction between copper and zirconia, which strongly affects the reduction property and catalytic performance of the catalysts. The stronger the interaction, the lower the reduction temperature and the better the performance of the catalysts. Surface area, pore structure and crystal structure of the catalysts are mainly controlled by preparation methods and alkalinity of synthesis system. The conversion of CO2 and selectivity of methanol are higher for DP catalysts than for SP catalysts.

Keywords Cu/ZrO2      methanol synthesis      deposition coprecipitation      solid state reaction      CO2/H2     
Corresponding Author(s): LIU Xinmei,Email:lxmei@upc.edu.cn   
Issue Date: 05 March 2012
 Cite this article:   
Xinmei LIU,Shaofen BAI,Huidong ZHUANG, et al. Preparation of Cu/ZrO2 catalysts for methanol synthesis from CO2/H2[J]. Front Chem Sci Eng, 2012, 6(1): 47-52.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-011-1170-4
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I1/47
Fig.1  Isotherms and mesopore distribution of zirconia. (a) Isotherms; (b) Mesopore distribution
Fig.2  Isotherms and mesopore distribution of CuO/ZrO catalysts. (a) Isotherms; (b) Mesopore distribution
Fig.3  XRD patterns of CuO/ZrO catalysts
Fig.4  TPR spectra of calcined CuO/ZrO catalysts
Fig.5  IR spectra of CO adsorbed on CuO, ZrO and Cu/ZrO catalysts
Fig.6  XPS spectra of calcined CuO/ZrO catalysts (a) Cu 2p, (b) Zr 3d
CatalystCO2 Conversion /%CO Selectivity /%MeOH Selectivity /%Yield of MeOH /(mmol?g-1?h-1)
DP-26.125.0674.940.227
DP-413.616.2583.481.76
SR-2- a)- a)- a)- a)
SR-413.8037.9562.051.20
Tab.1  Performance of the catalysts for methanol synthesis
1 Toyir J, Saito M, Yamauchi I, Luo S, Wu J, Takahara I, Takeuchi M. Development of high performance Raney Cu-based catalysts for methanol synthesis from CO2 and H2. Catalysis Today , 1998, 45(1–4): 245–250
doi: 10.1016/S0920-5861(98)00223-5
2 Inui T. Highly effective conversion of carbon dioxide to valuable compounds on composite catalysts. Catalysis Today , 1996, 29(1–4): 329–337
doi: 10.1016/0920-5861(95)00300-2
3 Denise B, Cherifi O, Bettahar M M, Sneeden R P. Supported copper catalysts prepared from copper(II) formate: hydrogenation of carbon dioxide containing feedstocks. Applied Catalysis , 1989, 48(2): 365–372
doi: 10.1016/S0166-9834(00)82805-5
4 Ma Y, Sun Q, Wu D, Fan W H, Zhang Y L, Deng J F. A practical approach for the preparation of high activity Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation. Applied Catalysis A, General , 1998, 171(1): 45–55
doi: 10.1016/S0926-860X(98)00079-9
5 Fan G D, Feng C G, Zhang Z. Surface and texture properties of Tb-doped ceria-zirconia solid solution prepared by sol-gel method. Journal of Rare Earths , 2007, 25(1): 42–47
doi: 10.1016/S1002-0721(07)60042-8
6 Chary K V R, Seela K K, Naresh D, Ramakanth P. Characterization and reductive amination of cyclohexanol and cyclohexanone over Cu/ZrO2 catalysts. Catalysis Communications , 2008, 9(1): 75–81
doi: 10.1016/j.catcom.2007.05.016
7 Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. Journal of Catalysis , 2007, 249(2): 185–194
doi: 10.1016/j.jcat.2007.04.003
8 Amenomiya Y. Methanol synthesis from CO2 + H2 II. Copper-based binary and ternary catalysts. Applied Catalysis , 1987, 30(1): 57–68
doi: 10.1016/S0166-9834(00)81011-8
9 Koeppel R A, Baiker A, Wokaun A. Copper/zirconia catalysts for the synthesis of methanol from carbon dioxide: influence of preparation variables on structural and catalytic properties of catalysts. Applied Catalysis A, General , 1992, 84(1): 77–102
doi: 10.1016/0166-9834(83)80239-5
10 Liu X M, Lu G D, Yan Z F. Nanocrystalline zirconia as catalyst support in methanol synthesis. Applied Catalysis A, General , 2005, 279(1–2): 241–245
doi: 10.1016/j.apcata.2004.10.040
11 Nitta Y, Fujmatsu T, Okamoto Y. Effect of starting salt on catalytic behaviour of Cu-ZrO2 catalysts in methanol synthesis from carbon dioxide. Catalysis Letters , 1993, 17(1–2): 157–165
doi: 10.1007/BF00763938
12 Dehertog W J H, Fromen G F. A catalytic route for aromatics production from LPG. Applied Catalysis A, General , 1999, 189(1): 63–75
13 Liu X M, Yan Z F, Lu G Q. Solid-state synthesis and characterisation of mesoporous zirconia with lamellar and wormhole-like mesostructures. Journal of Porous Materials , 2008, 15(2): 237–244
doi: 10.1007/s10934-007-9126-2
14 águila G, Guerrero S, Araya P. Influence of the crystalline structure of ZrO2 on the activity of Cu/ZrO2 catalysts on the water gas shift reaction. Catalysis Communications , 2008, 9(15): 2550–2554
doi: 10.1016/j.catcom.2008.07.011
15 Arena F, Italiano G, Barbera K, Bordiga S, Bonura G, Spadaro L, Frusteri F. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Applied Catalysis A, General , 2008, 350(1): 16–23
doi: 10.1016/j.apcata.2008.07.028
16 Liu Y, Hu Z S, Zhong R. TPR study of CuO/ZrO2 catalysts for methanol synthesis. Chinese Journal of Catalysis , 1996, 17: 256–259 (in Chinese)
17 Fujitani T, Nakamura J. The chemical modification seen in the Cu/ZnO methanol synthesis catalysts. Applied Catalysis A, General , 2000, 191(1–2): 111–129
doi: 10.1016/S0926-860X(99)00313-0
18 Burch R, Chappell R J. Support and additive effects in the synthesis of methanol over copper catalysts. Applied Catalysis A, General , 1988, 45(1): 131–150
doi: 10.1016/S0166-9834(00)82398-2
19 Xu R, Wei W, Dong Q N. In-situ diffuse reflectance FTIR study of CO adsorption on iron-modified Cu-Mn/ZrO2. Catalysts Spectroscopy and Spectral Analysis , 2003, 23: 1093–1096 (in Chinese)
20 Su W G, Ying P L, Feng Z C, Li C. FTIR spectroscopy study on quantum size effect of CuOx nanoparticles in CuOx/SiO2. Chemical Journal of Chinese Universities , 2010, 31: 1014–1018 (in Chinese)
21 Suh Y W, Moon S H, Rhee H K. Active sites in Cu/ZnO/ZrO2 catalysts for methanol synthesis from CO/H2. Catalysis Today , 2000, 63(2–4): 447–452
doi: 10.1016/S0920-5861(00)00490-9
22 Fu S S, Somorjai G A. Interactions of O2, CO, CO2, and D2 with the stepped CU(311) crystal face: comparison to CU(110). Surface Science , 1992, 262(1–2): 68–76
doi: 10.1016/0039-6028(92)90460-N
[1] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[2] Chang WANG,Yanlong ZHAI,Xi WANG,Ming ZENG. Preparation and characterization of lithium λ-MnO2 ion-sieves[J]. Front. Chem. Sci. Eng., 2014, 8(4): 471-477.
[3] Hui FAN, Huayan ZHENG, Zhong LI. Preparation of Cu/ZnO/Al2O3 catalyst under microwave irradiation for slurry methanol synthesis[J]. Front Chem Eng Chin, 2010, 4(4): 445-451.
[4] WU Yusong, LI Jiang, PAN Yubai, LIU Wenbin, AN Liqiong, WANG Shiwei, GUO Jingkun. Solid-state-reaction fabrication and properties of a high-doping Nd:YAG transparent laser ceramic[J]. Front. Chem. Sci. Eng., 2008, 2(3): 248-252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed