Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (1) : 27-33    https://doi.org/10.1007/s11705-011-1171-3
REVIEW ARTICLE
Nano-confined ammonia borane for chemical hydrogen storage
M. A. WAHAB1, Huijun ZHAO2, X. D. YAO1,3()
1. ARC Centre of Excellence for Functional Nanomaterials, Australian Institute for Engineering and Nanotechnology, the University of Queensland, St Lucia 4072, Australia; 2. Centre for Clean Energy and Environment, Griffith University, Gold Coast 4222, Australia; 3. Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan 4111, Australia
 Download: PDF(362 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

There is a great demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. In this regard, ammonia borane (NH3BH3, AB) containing 19.6 wt-% hydrogen has been considered as a promising material for hydrogen storage applications to realize the “hydrogen economy”, but with limits from slow kinetics of hydrogen release and by-product of trace gases such as ammonia and borazine. In this review, we introduce the recent research on AB, regarding to the nanoconfinement effect on improving the kinetics at a relatively low temperature and the prevention/reduction of undesirable gas formation.

Keywords ammonia borane      hydrogen storage     
Corresponding Author(s): YAO X. D.,Email:x.yao@griffith.edu.au   
Issue Date: 05 March 2012
 Cite this article:   
M. A. WAHAB,Huijun ZHAO,X. D. YAO. Nano-confined ammonia borane for chemical hydrogen storage[J]. Front Chem Sci Eng, 2012, 6(1): 27-33.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-011-1171-3
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I1/27
Molecular formulaH3NBH3
State at room temperaturesolid
Molecular weight /(g·mol-1)30.8
Hydrogen storage capacity /(wt-%)19.5
Hydrogen storage capacity /(g H2·L-1)152
Density /(g·cm-3)0.78
Solubility /(g per 100 g H2O)33.6
Melting point /°C112
Decomposition temperature78
Safety
StabilityMoisture sensitive
Stability of aqueous solutionHigh stability
Chemicals to avoidAcids, oxidising agents
Tab.1  Properties and safety aspects for AB
Fig.1  Schematic representation of AB in SBA-15 (a) SEM image of mesoporous silica; (b) TEM image of SBA-15 pores; (c) schematic representation of pore channels (7.5 nm) in SBA-15; (d) hydrogen-bonded AB network inside the pore []
Fig.2  The MS results of AB, AB/CMK-3, and AB/Li-CMK-3 []
Fig.3  The gravimetrically measured H release from AB/Li-CMK-3 nanocomposite []
Fig.4  3D structure image views of the (001) faces of (a) JUC-32-Y and (b) AB/JUC-32-Y. Views of 1D chains along [001] direction of JUC-32-Y (c) before and (d) after removal of terminal HO and (e) after interaction with AB. Y: bright blue; C: gray; O: pink; N: blue; B: purple []
Fig.5  Time dependences of hydrogen release from AB/JUC-32-Y at 95°C (red), 85°C (blue), 75°C (green) and neat AB at 85°C (black) []
1 Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature , 2001, 414(6861): 353-358
2 Baitalow F, Wolfa G, Grolier J P E, Danc F, Randzio S L. Thermal decomposition of ammonia-borane under pressures up to 600 bar. Thermochimica Acta , 2006, 445(2): 121-125
3 Klooster W T, Koetzle T F, Siegbahn P E M, Richardson T B, Crabtree R H. Study of the N-H···H-B dihydrogen bond including the crystal structure of BH3NH3 by neutron diffraction. Journal of the American Chemical Society , 1999, 121(27): 6337-6343
4 Umegaki T, Yan J M, Zhang X B, Shioyama H, Kuriyama N, Xu Q. Boron- and nitrogen-based chemical hydrogen storage materials. International Journal of Hydrogen Energy , 2009, 34(5): 2303-2311
5 Smythe N C, Gordon J C. Ammonia borane as a hydrogen carrier: dehydrogenation and regeneration. European Journal of Inorganic Chemistry , 2010, 2010(4): 509-521
6 Rassat S D, Aardahl C L, Autrey T, Smith R S. Thermal stability of ammonia borane: a case study for exothermic hydrogen storage materials. Energy & Fuels , 2010, 24(4): 2596-2606
7 Shore S G, Parry R W. The crystalline compound ammonia-borane, NH3BH3. Journal of the American Chemical Society , 1955, 77(22): 6084-6085
8 Shore S G, Parry R W. Chemical evidence for the structure of the “diammoniate of diborane”. II. The preparation of ammonia-borane. Journal of the American Chemical Society , 1958, 80(1): 8-12
9 Stephens F H, Pons V, Tom Baker R. Ammonia-borane: the hydrogen source par excellence? Dalton Transactions , 2007, (25): 2613-2626
10 Staubitz A, Robertson A P M, Manners I. Ammonia-borane and related compounds as dihydrogen sources. Chemical Reviews , 2010, 110(7): 4079-4124
11 Hamilton C W, Baker R T, Staubitz A, Manners I. B-N compounds for chemical hydrogen storage. Chemical Society Reviews , 2009, 38(1): 279-293
12 Heldebrant D J, Karkamkar A, Linehan J C, Autrey T. Synthesis of ammonia borane for hydrogen storage applications. Energy & Environmental Science , 2008, 1(1): 156-160
13 Karkamkar A, Aardahl C, Autrey T. Advanced applications of engineered nanomaterials. Materials Matters , 2007, 2(2): 10-15
14 Baitalow F, Baumann J, Wolf G, Jaenicke-R?βler K, Leitner G. Thermal decomposition of B–N–H compounds investigated by using combined thermoanalytical methods. Thermochimica Acta , 2002, 391(1-2): 159-168
15 Wolf G, Baumann J, Baitalow F, Hoffmann F P. Calorimetric process monitoring of thermal decomposition of B–N–H compounds. Thermochimica Acta , 2000, 343(1-2): 19-25
16 Wolf G, van Miltenburg J C, Wolf U. Thermochemical investigations on borazane (BH3–NH3) in the temperature range from 10 to 289 K. Thermochimica Acta , 1998, 317(2): 111-116
17 Baumann J, Baitalow F, Wolf G. Thermal decomposition of polymeric aminoborane (H2BNH2)x under hydrogen release. Thermochimica Acta , 2005, 430(1-2): 9-14
18 Sutton A D, Burrell A K, Dixon D A, Garner E B III, Gordon J C, Nakagawa T, Ott K C, Robinson J P, Vasiliu M. Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia. Science , 2011, 331(6023): 1426-1429
19 Marder T B. Will we soon be fueling our automobiles with ammonia-borane? Angewandte Chemie International Edition , 2007, 46(43): 8116-8118
20 Demirci U B, Miele P. Sodium borohydride versus ammonia borane, in hydrogen storage and direct fuel cell applications. Energy & Environmental Science , 2009, 2(6): 627-637
21 Langmi H W, McGrady G S. Non-hydride systems of the main group elements as hydrogen storage materials. Coordination Chemistry Reviews , 2007, 251(7-8): 925-935
22 Peng B, Chen J. Ammonia borane as an efficient and lightweight hydrogen storage medium. Energy & Environmental Science , 2008, 1: 479-483
23 Orimo S, Nakamori Y, Eliseo J R, Züttel A, Jensen C M. Complex hydrides for hydrogen storage. Chemical Reviews , 2007, 107(10): 4111-4132
24 Xiong Z T, Yong C K, Wu G T, Chen P, Shaw W, Karkamkar A, Autrey T, Jones M O, Johnson S R, Edwards P P, David W I F. High-capacity hydrogen storage in lithium and sodium amidoboranes. Nature Materials , 2008, 7(2): 138-141
25 Gutowska A, Li L, Shin Y, Wang C M, Li X S, Linehan J C, Smith R S, Kay B D, Schmid B, Shaw W, Gutowski M, Autrey T. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angewandte Chemie International Edition , 2005, 44(23): 3578-3582
26 Yao X, Wu C, Du A, Zou J, Zhu Z, Wang P, Cheng H, Smith S, Lu G. Metallic and carbon nanotube-catalyzed coupling of hydrogenation in magnesium. Journal of the American Chemical Society , 2007, 129(50): 15650-15654
27 Li L, Yao X, Sun C, Du A, Cheng L, Zhu Z, Yu C, Zou J, Smith S C, Wang P, Cheng H M, Frost R L, Lu G Q(Max). Lithium-catalyzed dehydrogenation of ammonia borane with mesoporous carbon framework for chemical hydrogen storage. Advanced Functional Materials , 2009, 19(2): 265-271
28 Zhang D L, Cantor B. The effect of dopants on the heterogeneous nucleation of solidification of Cd and Pb particles embedded in an Al matrix. Acta Metallurgica et Materialia , 1992, 40(11): 2951-2960
29 Jin S A, Lee Y S, Shim J H, Cho Y W. Reversible hydrogen storage in LiBH4-MH2 (M = Ce, Ca) composites. Journal of Physical Chemistry C , 2008, 112(25): 9520-9524
30 Alba-Simionesco C, Coasne B, Dosseh G, Dudziak G, Gubbins K E, Radhakrishnan R, Sliwinska-Bartkowiak M. Effects of confinement on freezing and melting. Journal of Physics Condensed Matter , 2006, 18(6): R15-R68
31 Santiso E E, George A M, Turner C H, Kostov M K, Gubbins K E, Marco B N, Malgorzata S B. Adsorption and catalysis: the effect of con?nement on chemical reactions. Applied Surface Science , 2005, 252(3): 766-777
32 Mayo M J, Suresh A, Porter W D. Thermodynamics for nanosystems: grain and particle-size dependent phase diagrams. Review Advanced Materials Science , 2003, 5: 100-109
33 Grochala W, Edwards P P. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chemical Reviews , 2004, 104(3): 1283-1316
34 Feaver A, Sepehri S, Shamberger P, Stowe A, Autrey T, Cao G. Coherent carbon cryogel-ammonia borane nanocomposites for H2 storage. Journal of Physical Chemistry B , 2007, 111(26): 7469-7472
35 Clark T J, Russell C A, Manners I. Homogeneous, titanocene-catalyzed dehydrocoupling of amine-borane adducts. Journal of the American Chemical Society , 2006, 128(30): 9582-9583
36 Bluhm M E, Bradley M G, Butterick R 3rd, Kusari U, Sneddon L G. Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. Journal of the American Chemical Society , 2006, 128(24): 7748-7749
37 Diyabalanage H V K, Shrestha R P, Semelsberger T A, Scott B L, Bowden M E, Davis B L, Burrell A K. Calcium amidotrihydroborate: a hydrogen storage material. Angewandte Chemie International Edition , 2007, 46(47): 8995-8997
38 Chen Y S, Fulton J L, Linehan J C, Autrey T. In situ XAFS and NMR study of rhodium-catalyzed dehydrogenation of dimethylamine borane. Journal of the American Chemical Society , 2005, 127(10): 3254-3255
39 Denney M C, Pons V, Hebden T J, Heinekey D M, Goldberg K I. Efficient catalysis of ammonia borane dehydrogenation. Journal of the American Chemical Society , 2006, 128(37): 12048-12049
40 Blaquiere N, Diallo-Garcia S, Gorelsky S I, Black D A, Fagnou K. Ruthenium-catalyzed dehydrogenation of ammonia boranes. Journal of the American Chemical Society , 2008, 130(43): 14034-14035
41 Lin Y, Mao W L, Mao H K. Storage of molecular hydrogen in an ammonia borane compound at high pressure. Proceedings of the National Academy of Sciences of the United States of America , 2009, 106(20): 8113-8116
42 Li Z, Zhu G, Lu G, Qiu S, Yao X. Ammonia borane confined by a metal-organic framework for chemical hydrogen storage: enhancing kinetics and eliminating ammonia. Journal of the American Chemical Society , 2010, 132(5): 1490-1491
43 Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O’Keeffe M, Yaghi O M. Hydrogen storage in microporous metal-organic frameworks. Science , 2003, 300(5622): 1127-1129
44 de Jongh P E, Adelhelm P. Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals. ChemSusChem , 2010, 3(12): 1332-1348
45 Férey G. Hybrid porous solids: past, present, future. Chemical Society Reviews , 2008, 37(1): 191-214
46 Noro S I, Kitagawa S, Kondo M, Seki K. A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)2}n]. Angewandte Chemie International Edition , 2000, 39(12): 2081-2084
47 Sun W, Li S, Mao J, Guo Z, Liu H, Dou S, Yu X. Nanoconfinement of lithium borohydride in Cu-MOFs towards low temperature dehydrogenation. Dalton Transactions (Cambridge, England) , 2011, 40(21): 5673-5676
48 Tedds S, Walton A, Broomb D P, Book D. Characterisation of porous hydrogen storage materials: carbons, zeolites, MOFs and PIMs. Faraday Discussions , 2011, 151: 75-94
49 Juan-Juan J, Marco-Lozar J P, Suárez-Garcia F, Cazorla-Amorós D, Linares-Solano A. A comparison of hydrogen storage in activated carbons and a metal–organic framework (MOF-5). Carbon , 2010, 48(10): 2906-2909
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed