Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (2) : 192-197    https://doi.org/10.1007/s11705-012-1284-3
RESEARCH ARTICLE
Mercury removal and recovery by immobilized Bacillus megaterium MB1
Meifang CHIEN, Ryo NAKAHATA, Tetsuya ONO, Keisuke MIYAUCHI, Ginro ENDO()
Faculty of Engineering, Tohoku-Gakuin University, Miyagi 985-8537, Japan
 Download: PDF(214 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

From several mercury removing microorganisms, we selected Bacillus megaterium MB1, which is non-pathogenic, broad-spectrum mercury resistant, mercuric ion reducing, heat tolerant, and spore-forming, as a useful bacterium for bioremediation of mercury pollution. In this study, mercury removal performance of the immobilized B. megaterium MB1 was investigated to develop safe, efficient and stable catalytic bio-agent for mercury bioremediation. The results showed that the alginate gel immobilized B. megaterium MB1 cells efficiently removed 80% of mercury from the solution containing 10 mg/L mercuric chloride within 24 h. These cells still had high activity of mercury removal even after mercuric ion loading was repeated for nine times. The analysis of mercury contents of the alginate beads with and without immobilized B. megaterium MB1 suggested that a large portion of reduced metallic mercury was trapped in the gel beads. It was concluded that the alginate gel immobilized B. megaterium MB1 cells have potential to remove and recover mercury from mercury-containing water.

Keywords mercury removal      immobilized bacteria      alginate gel      bioremediation     
Corresponding Author(s): ENDO Ginro,Email:gendo@tjcc.tohoku-gakuin.ac.jp   
Issue Date: 05 June 2012
 Cite this article:   
Meifang CHIEN,Ryo NAKAHATA,Tetsuya ONO, et al. Mercury removal and recovery by immobilized Bacillus megaterium MB1[J]. Front Chem Sci Eng, 2012, 6(2): 192-197.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-012-1284-3
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I2/192
Fig.1  (a) Mercury volatilization by strains from mercuric chloride solution. (b) Mercury volatilization by suspended free cells of MB1. The initial concentration of mercuric chloride solution was 10 mg/L
MIC of HgCl2 /(mg·L-1)Mercury removal rate / (mg·L-1·h-1)
B. subtilis 1685.0-
B. megaterium MB120.00.35
B. cereus RC60750.01.05
B. cereus VKM68450.00.51
Tab.1  MICs of mercuric chloride and mercury removal rates of the strains
Fig.2  (a) Mercuric chloride removal by alginate-immobilized MB1 beads. (b) The change of mercury content in the alginate gel. The data were averages of triplicate analysis
Fig.3  Repeated mercury removal by alginate-immobilized MB1 cells. The data were averages of triplicate experiments
ItemRelative mercury volatilization activity in each loading of mercuric ion /% a)
1st2nd3rd4th5th6th7th8th9th
ImmobilizedB. megaterium MB1100.0116.5(0.1)91.7(0.1)84.9(0.2)111.7(2.3)103.6(1.2)64.6(0.5)70.6(0.4)79.0(0.8)
Free-livingB. megaterium MB1100.090.2(0.5)65.4(2.5)57.3(3.7)30.1(7.5)7.5(2.1)5.1(2.6)4.3(3.1)3.7(2.3)
Tab.2  Repeated mercury volatilization of immobilized MB1 cells
Fig.4  Accumulation of mercury in alginate-immobilized MB1 gel beads during the repeated mercury removal experiment. The data were averages of triplicate experiments
1 Harada M. Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Critical Reviews in Toxicology , 1995, 25(1): 1-24
doi: 10.3109/10408449509089885 pmid:7734058
2 Barkay T, Miller S M, Summers A O. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews , 2003, 27(2-3): 355-384
doi: 10.1016/S0168-6445(03)00046-9 pmid:12829275
3 Osborn A M, Bruce K D, Strike P, Ritchie D A. Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiology Reviews , 1997, 19(4): 239-262
doi: 10.1111/j.1574-6976.1997.tb00300.x pmid:9167257
4 Bogdanova E S, Bass I A, Minakhin L S, Petrova M A, Mindlin S Z, Volodin A A, Kalyaeva E S, Tiedje J M, Hobman J L, Brown N L, Nikiforov V G. Horizontal spread of mer operons among gram-positive bacteria in natural environments. Microbiology , 1998, 144(3): 609-620
doi: 10.1099/00221287-144-3-609 pmid:9534232
5 Laddaga R A, Chu L, Misra T K, Silver S. Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. Proceedings of the National Academy of Sciences of the United States of America , 1987, 84(15): 5106-5110
doi: 10.1073/pnas.84.15.5106 pmid:3037534
6 Kiyono M, Omura T, Inuzuka M, Fujimori H, Pan-Hou H. Nucleotide sequence and expression of the organomercurial-resistance determinants from a Pseudomonas K-62 plasmid pMR26. Gene , 1997, 189(2): 151-157
doi: 10.1016/S0378-1119(96)00741-X pmid:9168120
7 Wang Y, Moore M, Levinson H S, Silver S, Walsh C, Mahler I. Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillus sp. with broad-spectrum mercury resistance. Journal of Bacteriology , 1989, 171(1): 83-92
pmid:2536669
8 Huang C C, Narita M, Yamagata T, Itoh Y, Endo G. Structure analysis of a class II transposon encoding the mercury resistance of the Gram-positive Bacterium bacillus megaterium MB1, a strain isolated from minamata bay, Japan. Gene , 1999, 234(2): 361-369
doi: 10.1016/S0378-1119(99)00184-5 pmid:10395910
9 Narita M, Chiba K, Nishizawa H, Ishii H, Huang C C, Kawabata Z, Silver S, Endo G. Diversity of mercury resistance determinants among Bacillus strains isolated from sediment of Minamata Bay. FEMS Microbiology Letters , 2003, 223(1): 73-82
doi: 10.1016/S0378-1097(03)00325-2 pmid:12799003
10 Chen Y M, Lin T F, Huang C, Lin J C, Hsieh F M. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. Journal of Hazardous Materials , 2007, 148(3): 660-670
doi: 10.1016/j.jhazmat.2007.03.030 pmid:17434262
11 Wang X, Gai Z, Yu B, Feng J, Xu C, Yuan Y, Lin Z, Xu P. Degradation of carbazole by microbial cells immobilized in magnetic gellan gum gel beads. Applied and Environmental Microbiology , 2007, 73(20): 6421-6428
doi: 10.1128/AEM.01051-07 pmid:17827304
12 Okino S, Iwasaki K, Yagi O, Tanaka H. Removal of mercuric chloride by immobilized cells of genetically modified Pseudomonas putida PpY101/pSR134. Journal of Environmental Biotechnology , 2001, 1: 41-47
13 Chien M F, Narita M, Lin K H, Matsui K, Huang C C, Endo G. Organomercurials removal by heterogeneous merB genes harboring bacterial strains. Journal of Bioscience and Bioengineering , 2010, 110(1): 94-98
doi: 10.1016/j.jbiosc.2010.01.010 pmid:20541123
14 Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. New York: Cold Spring Harbor Laboratory, Cold Spring Harbor, 1989, A2. 2
15 Sinha A, Khare S K. Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application. Biodegradation , 2012, 23(1): 25-34
doi: 10.1007/s10532-011-9483-z pmid:21607817
16 Kiyono M, Omura H, Omura T, Murata S, Pan-Hou H. Removal of inorganic and organic mercurials by immobilized bacteria having mer-ppk fusion plasmids. Applied Microbiology and Biotechnology , 2003, 62(2-3): 274-278
doi: 10.1007/s00253-003-1282-y pmid:12883875
17 Harel P, Mingot L, Junter G A. Cadmium removal from dilute aqueous solution by beads of polysaccharide gels usable for microbial cell immobilization. International Biodeterioration & Biodegradation , 1996, 37(3-4): 239-240
doi: 10.1016/0964-8305(96)88261-8
18 Lázaro N, Sevilla A L, Morales S, Marqués A M. Heavy metal biosorption by gellan gum gel beads. Water Research , 2003, 37(9): 2118-2126
doi: 10.1016/S0043-1354(02)00575-4 pmid:12691898
[1] Yu Yang, Hassan Javed, Danning Zhang, Deyi Li, Roopa Kamath, Kevin McVey, Kanwartej Sra, Pedro J.J. Alvarez. Merits and limitations of TiO2-based photocatalytic pretreatment of soils impacted by crude oil for expediting bioremediation[J]. Front. Chem. Sci. Eng., 2017, 11(3): 387-394.
[2] Suvidha Gupta,R. A. Pandey,Sanjay B. Pawar. Microalgal bioremediation of food-processing industrial wastewater under mixotrophic conditions: Kinetics and scale-up approach[J]. Front. Chem. Sci. Eng., 2016, 10(4): 499-508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed