Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (1) : 1-8    https://doi.org/10.1007/s11705-013-1304-y
REVIEW ARTICLE
Problems, potentials and future of industrial crystallization
J. Ulrich(), P. Frohberg
Center for Engineering Science, Thermal Process Engineering, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
 Download: PDF(144 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This review discusses important research developments and arising challenges in the field of industrial crystallization with an emphasis on recent problems. The most relevant areas of research have been identified. These are the prediction of phase diagrams; the prediction of effects of impurities and additives; the design of fluid dynamics; the process control with process analytical technologies (PAT) tools; the polymorph and solvate screening; the stabilization of non-stable phases; and the product design. The potential of industrial crystallization in various areas is outlined and discussed with particular reference to the product quality, process design, and control. On this basis, possible future directions for research and development have been pointed out to highlight the importance of crystallization as an outstanding technique for separation, purification as well as for product design.

Keywords industrial crystallization      potentials and future      product design     
Corresponding Author(s): Ulrich J.,Email:joachim.ulrich@iw.uni-halle.de   
Issue Date: 05 March 2013
 Cite this article:   
J. Ulrich,P. Frohberg. Problems, potentials and future of industrial crystallization[J]. Front Chem Sci Eng, 2013, 7(1): 1-8.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1304-y
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I1/1
Fig.1  Ultrasound velocity and attenuation measured as a function of suspension density and different particle sizes of urea []
Fig.1  Ultrasound velocity and attenuation measured as a function of suspension density and different particle sizes of urea []
1 Chen J, Sarma B, Evans J M B, Myerson A S. Pharmaceutical Crystallization. Crystal Growth & Design , 2011, 11(4): 887–895
doi: 10.1021/cg101556s
2 Ulrich J. Solution crystallization—developments and new trends. Chemical Engineering & Technology , 2003, 26(8): 832–835
doi: 10.1002/ceat.200300003
3 Kroupa A. Modelling of phase diagrams and thermodynamic properties using Calphad method—development of thermodynamic databases. Computational Materials Science (in press)
4 Xiong H, Huang Z, Wu Z, Conway P P. A generalized computational interface for combined thermodynamic and kinetic modeling. Calphad , 2011, 35(3): 391–395
doi: 10.1016/j.calphad.2011.05.004
5 Jung I H, Kim J. Thermodynamic modeling of the Mg-Ge-Si, Mg–Ge–Sn, Mg–Pb–Si and Mg–Pb–Sn systems. Journal of Alloys and Compounds , 2010, 494(1-2): 137–147
doi: 10.1016/j.jallcom.2010.01.045
6 Al-Jibbouri S, Strege C, Ulrich J. Crystallization kinetics of epsomite influenced by pH-value and impurities. Journal of Crystal Growth , 2002, 236(1-3): 400–406
doi: 10.1016/S0022-0248(01)02172-8
7 Sangwal K. On the nature of supersaturation barriers observed during the growth of crystals from aqueous solutions containing impurities. Journal of Crystal Growth , 2002, 242(1-2): 215–228
doi: 10.1016/S0022-0248(02)01326-X
8 Buchfink R, Schmidt C, Ulrich J. Fe3+ as an example of the effect of trivalent additives on the crystallization of inorganic compounds, here ammonium sulfate. CrystEngComm , 2011, 13(4): 1118–1122
doi: 10.1039/c0ce00107d
9 Dang L, Wei H, Wang J. Effects of ionic impurities (Fe2+ and SO42-) on the crystal growth and morphology of phosphoric acid hemihydrate during batch crystallization. Industrial & Engineering Chemistry Research , 2007, 46(10): 3341–3347
doi: 10.1021/ie0614881
10 Févotte F, Févotte G. A method of characteristics for solving population balance equations (PBE) describing the adsorption of impurities during crystallization processes. Chemical Engineering Science , 2010, 65(10): 3191–3319
doi: 10.1016/j.ces.2010.02.009
11 Schmidt C, Ulrich J. Morphology prediction of crystals grown in the presence of impurities and solvents—an evaluation of the state of the art. Journal of Crystal Growth , 2012, 353(1): 168–173
doi: 10.1016/j.jcrysgro.2012.05.001
12 Lu J J, Ulrich J. Improved understanding of molecular modeling—the importance of additive incorporation. Journal of Crystal Growth , 2004, 270(1-2): 203–210
doi: 10.1016/j.jcrysgro.2004.06.010
13 Nieh?rster S, Ulrich J. Designing Crystal Morphology by a Simple Approach. Crystal Research and Technology , 1995, 30(3): 389–395
doi: 10.1002/crat.2170300319
14 Winn D, Doherty M F. A new technique for predicting the shape of solution-grown organic crystals. AlChE J , 1998, 44(11): 2501–2514
doi: 10.1002/aic.690441117
15 Schmidt C, Ulrich J. Crystal habit prediction—including the liquid as well as the solid side. Crystal Research and Technology , 2012, 47(6): 597–602
doi: 10.1002/crat.201100609
16 Jones A, Rigopoulos S, Zauner R. Crystallization and precipitation engineering. Computers & Chemical Engineering , 2005, 29(6): 1159–1166
doi: 10.1016/j.compchemeng.2005.02.022
17 Rielly C D, Marquis A J. A particle's eye view of crystallizer fluid mechanics. Chemical Engineering Science , 2001, 56(7): 2475–2493
doi: 10.1016/S0009-2509(00)00457-7
18 Kramer H J M, Dijkstra J W, Verheijen P J T, Van Rosmalen G M. Modeling of industrial crystallizers for control and design purposes. Powder Technology , 2000, 108(2-3): 185–191
doi: 10.1016/S0032-5910(99)00219-3
19 Kulikov V, Briesen H, Marquardt W. A framework for the simulation of mass crystallization considering the effect of fluid dynamics. Chemical Engineering and Processing , 2006, 45(10): 886–899
doi: 10.1016/j.cep.2005.09.008
20 Kulikov V, Briesen H, Marquardt W. Scale integration for the coupled simulation of crystallization and fluid dynamics. Chemical Engineering Research & Design , 2005, 83(6): 706–717
doi: 10.1205/cherd.04363
21 Sha Z, Palosaari S. Mixing and crystallization in suspensions. Chemical Engineering Science , 2000, 55(10): 1797–1806
doi: 10.1016/S0009-2509(99)00458-3
22 Kougoulos E, Jones A G, Wood-Kaczmar M W. Process modelling tools for continuous and batch organic crystallization processes including application to scale-up. Organic Process Research & Development , 2006, 10(4): 739–750
doi: 10.1021/op060039+
23 Wei H Y. Computer-aided design and scale-up of crystallization processes: integrating approaches and case studies. Chemical Engineering Research & Design , 2010, 88(10): 1377–1380
doi: 10.1016/j.cherd.2009.07.020
24 Kougoulos E, Jones A G, Wood-Kaczmar M. CFD modelling of mixing and heat transfer in batch cooling crystallizers: aiding the development of a hybrid predictive compartmental model. Chemical Engineering Research & Design , 2005, 83(1): 30–39
doi: 10.1205/cherd.04080
25 Essemiani K, de Traversay C, Gallot J C. Computational-fluid-dynamics (CFD) modelling of an industrial crystallizer: application to the forced-circulation reactor. Biotechnology and Applied Biochemistry , 2004, 40(Pt 3): 235–241
doi: 10.1042/BA20030221 pmid:15139855
26 Chew W, Sharratt P. Trends in process analytical technology. Anal Methods , 2010, 2(10): 1412–1438
doi: 10.1039/c0ay00257g
27 Chen Z, Lovett D, Morris J. Process analytical technologies and real time process control a review of some spectroscopic issues and challenges. Journal of Process Control , 2011, 21(10): 1467–1482
doi: 10.1016/j.jprocont.2011.06.024
28 Birch M, Fussell S J, Higginson P D, McDowall N, Marziano I. Towards a PAT-Based strategy for crystallization development. Organic Process Research & Development , 2005, 9(3): 360–364
doi: 10.1021/op0500077
29 Yu L X, Lionberger R A, Raw A S, D’Costa R, Wu H, Hussain A S. Applications of process analytical technology to crystallization processes. Advanced Drug Delivery Reviews , 2004, 56(3): 349–369
doi: 10.1016/j.addr.2003.10.012 pmid:14962586
30 Kail N, Marquardt W, Briesen H. Process analysis by means of focused beam reflectance measurements. Industrial & Engineering Chemistry Research , 2009, 48(6): 2936–2946
doi: 10.1021/ie800839s
31 Borissova A, Khan S, Mahmud T, Roberts K J, Andrews J, Dallin P, Chen Z P, Morris J. In situ measurement of solution concentration during the batch cooling crystallization of l-glutamic acid using ATR-FTIR spectroscopy coupled with chemometrics. Crystal Growth & Design , 2009, 9(2): 692–706
doi: 10.1021/cg7010265
32 Saleemi A N, Steele G, Pedge N I, Freeman A, Nagy Z K. Enhancing crystalline properties of a cardiovascular active pharmaceutical ingredient using a process analytical technology based crystallization feedback control strategy. International Journal of Pharmaceutics , 2012, 430(1-2): 56–64
doi: 10.1016/j.ijpharm.2012.03.029 pmid:22449455
34 Jia C Y, Yin Q X, Zhang M J, Wang J K, Shen Z H. Polymorphic transformation of pravastatin sodium monitored using combined online FBRM and PVM. Organic Process Research & Development , 2008, 12(6): 1223–1228
doi: 10.1021/op8001257
35 Pertig D, Buchfink R, Petersen S, Stelzer T, Ulrich J. Inline analyzing of industrial crystallization processes by an innovative ultrasonic probe technique. Chemical Engineering & Technology , 2011, 34(4): 639–646
doi: 10.1002/ceat.201000558
36 Purohit R, Venugopalan P. Polymorphism: an overview. Reson , 2009, 14(9): 882–893
doi: 10.1007/s12045-009-0084-7
37 Sarma B, Chen J, Hsi H Y, Myerson A S. Solid forms of pharmaceuticals: polymorphs, salts and cocrystals. Korean J Chem Eng , 2011, 28(2): 315–322
doi: 10.1007/s11814-010-0520-0
38 Yu Z Q, Chew J W, Chow P S, Tan R B H. Recent advances in crystallization control: an industrial perspective. Chemical Engineering Research & Design , 2007, 85(7): 893–905
doi: 10.1205/cherd06234
39 Yu L, Reutzel-Edens S M, Mitchell C A. Crystallization and polymorphism of conformationally flexible molecules: problems, patterns, and strategies. Organic Process Research & Development , 2000, 4(5): 396–402
doi: 10.1021/op000028v
40 Mangin D, Puel F, Veesler S. Polymorphism in processes of crystallization in solution: a practical review. Organic Process Research & Development , 2009, 13(6): 1241–1253
doi: 10.1021/op900168f
41 Lee A Y, Erdemir D, Myerson A S. Crystal polymorphism in chemical process development. Chem Biomol Eng , 2011, 2(1): 259–280
doi: 10.1146/annurev-chembioeng-061010-114224 pmid:22432619
42 Aaltonen J, Alles? M, Mirza S, Koradia V, Gordon K C, Rantanen J. Solid form screening—a review. European Journal of Pharmaceutics and Biopharmaceutics , 2009, 71(1): 23–37
doi: 10.1016/j.ejpb.2008.07.014 pmid:18715549
43 Févotte G. In situ Raman spectroscopy for in-line control of pharmaceutical crystallization and solids elaboration processes: a review. Chemical Engineering Research & Design , 2007, 85(7): 906–920
doi: 10.1205/cherd06229
44 Parmar M M, Khan O, Seton L, Ford J L. Polymorph selection with morphology control using solvents. Crystal Growth & Design , 2007, 7(9): 1635–1642
doi: 10.1021/cg070074n
45 Capes J S, Cameron R E. Contact line crystallization to obtain metastable polymorphs. Crystal Growth & Design , 2006, 7(1): 108–112
doi: 10.1021/cg0605988
46 Zencirci N, Gelbrich T, Kahlenberg V, Griesser U J. Crystallization of metastable polymorphs of phenobarbital by isomorphic seeding. Crystal Growth & Design , 2009, 9(8): 3444–3456
doi: 10.1021/cg801416a
47 Gu C H, Chatterjee K, Young V Jr, Grant D J W. Stabilization of a metastable polymorph of sulfamerazine by structurally related additives. Journal of Crystal Growth , 2002, 235(1-4): 471–481
doi: 10.1016/S0022-0248(01)01784-5
48 Rohani S, Horne S, Murthy K. Control of product quality in batch crystallization of pharmaceuticals and fine chemicals. Part 1: Design of the crystallization process and the effect of solvent. Organic Process Research & Development , 2005, 9(6): 858–872
doi: 10.1021/op050049v
49 Kramer H J M, Bermingham S K, van Rosmalen G M. Design of industrial crystallisers for a given product quality. Journal of Crystal Growth , 1999, 198-199(1): 729–737
doi: 10.1016/S0022-0248(98)01179-8
50 Vatamanu J, Kusalik P G. Observation of two-step nucleation in methane hydrates. Physical Chemistry Chemical Physics , 2010, 12(45): 15065–15072
doi: 10.1039/c0cp00551g pmid:20957258
51 Huang F, Zhang H, Banfield J F. Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Letters , 2003, 3(3): 373–378
doi: 10.1021/nl025836+
52 Penn R L, Tanaka K, Erbs J. Size dependent kinetics of oriented aggregation. Journal of Crystal Growth , 2007, 309(1): 97–102
doi: 10.1016/j.jcrysgro.2007.09.011
53 Penn R L. Kinetics of Oriented Aggregation. Journal of Physical Chemistry B , 2004, 108(34): 12707–12712
doi: 10.1021/jp036490+
54 Stelzer T, Ulrich J. No product design without process design (control)? Chemical Engineering & Technology , 2010, 33(5): 723–729
doi: 10.1002/ceat.200900478
55 Stelzer T, Ulrich J. Crystallization a tool for product design. Adv Powder Technol , 2010, 21(3): 227–234
doi: 10.1016/j.apt.2010.04.006
56 Nagy Z K. Model based robust control approach for batch crystallization product design. Computers & Chemical Engineering , 2009, 33(10): 1685–1691
doi: 10.1016/j.compchemeng.2009.04.012
57 Ulrich J, Schuster A, Stelzer T. Crystalline coats or hollow crystals as tools for product design in pharmaceutical industry. Journal of Crystal Growth , 2013, 362(1): 235–237
doi: 10.1016/j.jcrysgro.2011.10.060
58 Schuster A, Stelzer T, Ulrich J. Generation of crystalline hollow needles: new approach by liquid-liquid phase transformation. Chemical Engineering & Technology , 2011, 34(4): 599–603
doi: 10.1002/ceat.201000511
59 R?mbach E, Ulrich J. Self-controlled coating process for drugs. Crystal Growth & Design , 2007, 7(9): 1618–1622
doi: 10.1021/cg070071a
60 Nagy Z K, Braatz R D. Robust nonlinear model predictive control of batch processes. AlChE J , 2003, 49(7): 1776–1786
doi: 10.1002/aic.690490715
61 Nagy Z K, Braatz R D. Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis. Journal of Process Control , 2004, 14(4): 411–422
doi: 10.1016/j.jprocont.2003.07.004
62 Hermanto M W, Chiu M S, Woo X Y, Braatz R D. Robust optimal control of polymorphic transformation in batch crystallization. AlChE J , 2007, 53(10): 2643–2650
doi: 10.1002/aic.11266
[1] Xingfu SONG, Shuying SUN, Dengke ZHANG, Jin WANG, Jianguo YU. Synthesis and characterization of magnesium hydroxide by batch reaction crystallization[J]. Front Chem Sci Eng, 2011, 5(4): 416-421.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed