Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (1) : 20-28    https://doi.org/10.1007/s11705-013-1311-z
REVIEW ARTICLE
Ultrasound-mediated targeted microbubbles: a new vehicle for cancer therapy
Junxiao YE1, Huining HE1,4,5(), Junbo GONG1, Weibing DONG1, Yongzhuo HUANG2,3, Jianxin WANG3, Guanyi CHEN4, Victor C YANG5,6()
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; 3. Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Shanghai 201203, China; 4. School of Environmental Science and Engineering, State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China; 5. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; 6. Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
 Download: PDF(492 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the hope of overcoming the serious side effects, great endeavor has been made in tumor-targeted chemotherapy, and various drug delivery modalities and drug carriers have been made to decrease systemic toxicity caused by chemotherapeutic agents. Scientists from home and abroad focus on the research of targeted microbubbles contrast agent, and the use of the targeted ultrasound microbubble contrast agent can carry gene drugs and so on to the target tissue, as well as mediated tumor cell apoptosis and tumor microvascular thrombosis block, etc., thus plays the role of targeted therapy. Recent studies have elucidated the mechanisms of drug release and absorption, however, much work remains to be done in order to develop a successful and optimal system. In this review, we summarized the continuing efforts in understanding the usage of the ultrasound triggered target microbubbles in cancer therapy, from release mechanism to preparation methods. The latest applications of ultrasound-triggered targeted microbubbles in cancer therapy, especially in gene therapy and antiangiogenic cancer therapy were discussed. Moreover, we concluded that as a new technology, ultrasound–triggered targeted microbubbles used as drug carriers and imaging agents are still energetic and are very likely to be translated into clinic in the near future.

Keywords ultrasound-mediated      targeted microbubbles      cancer     
Corresponding Author(s): HE Huining,Email:hnhe@tju.edu.cn; YANG Victor C,Email:vcyang@umich.edu   
Issue Date: 05 March 2013
 Cite this article:   
Junxiao YE,Huining HE,Junbo GONG, et al. Ultrasound-mediated targeted microbubbles: a new vehicle for cancer therapy[J]. Front Chem Sci Eng, 2013, 7(1): 20-28.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1311-z
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I1/20
Fig.1  Experimental setup for microbubble-mediated ultrasound therapy []. (Reprinting with permission)
Fig.1  Experimental setup for microbubble-mediated ultrasound therapy []. (Reprinting with permission)
Fig.2  Destruction of microbubbles by ultrasound resulting in increased membrane permeability by shear stress, temperature rise and activation of reactive oxygen species. Microbubbles deliver drug by: (a) transient holes induced by shear stress; (b) increase in membrane fluidity; (c) endocytosis of microbubbles; (d) fusion of the microbubble membrane with the cell membrane []. (Reprinting with permission)
Fig.2  Destruction of microbubbles by ultrasound resulting in increased membrane permeability by shear stress, temperature rise and activation of reactive oxygen species. Microbubbles deliver drug by: (a) transient holes induced by shear stress; (b) increase in membrane fluidity; (c) endocytosis of microbubbles; (d) fusion of the microbubble membrane with the cell membrane []. (Reprinting with permission)
Fig.3  Different ways of how microbubbles transport drugs/DNA. (a) Drug attached to membrane; (b) drug embedded in membrane; (c) drug on the membrane; (d) drug enclosed in membrane; (e) drug in oil layer [,]. (Reprinting with permission)
Fig.3  Different ways of how microbubbles transport drugs/DNA. (a) Drug attached to membrane; (b) drug embedded in membrane; (c) drug on the membrane; (d) drug enclosed in membrane; (e) drug in oil layer [,]. (Reprinting with permission)
Fig.4  Attachment of ligands to microbubble surface: (a) directly, (b) via avidin bridge, (c) via a flexible spacer arm. Used by Klibanov [,]. (Reprinting with permission)
Fig.4  Attachment of ligands to microbubble surface: (a) directly, (b) via avidin bridge, (c) via a flexible spacer arm. Used by Klibanov [,]. (Reprinting with permission)
Fig.5  Gene delivery using ultrasound and microbubbles. The presence of gas in the gene-filled microbubble allows ultrasound energy to “pop” the bubble. An energetic wave is then created which allows the genetic material to enter surrounding cells [,]. (Reprinting with permission)
Fig.5  Gene delivery using ultrasound and microbubbles. The presence of gas in the gene-filled microbubble allows ultrasound energy to “pop” the bubble. An energetic wave is then created which allows the genetic material to enter surrounding cells [,]. (Reprinting with permission)
Fig.6  Cartoons illustrating the suggested mechanism for plasmid DNA transfection to tumor cells in vivo using polyplex-microbubbles. (1–2) Polyplex-microbubbles enter the tumor vasculature after being introduced systemically. (3) Ultrasound applied to the tumor region causes inertial cavitation and microbubble fragmentation, resulting in polyplex/lipid release and permeation of the endothelial lining, allowing the DNA vector to extravasate into tumor tissue. (4) Polyplex/lipid vector entry into a tumor cell may be due to (A) physical disruption of the cell membrane to allow passive entry into the cytoplasm, and (B) enhanced clatherin-mediated endocytotic uptake, where PEI facilitates interaction with the cell membrane. In the latter case, polyplex/lipid vectors are taken up into early endosomes (EE) and then trafficked into late endosomes (LE) or lysosomal compartments. PEI is thought to cause osmotic swelling and endosomal rupture (ER) via a proton-sponge effect [], allowing polyplex entry into the cytoplasm. Plasmid DNA dissociates from the PEI/lipid vector and enters the nucleus of the cell where the genes can be expressed []. (Reprinting with permission)
Fig.6  Cartoons illustrating the suggested mechanism for plasmid DNA transfection to tumor cells in vivo using polyplex-microbubbles. (1–2) Polyplex-microbubbles enter the tumor vasculature after being introduced systemically. (3) Ultrasound applied to the tumor region causes inertial cavitation and microbubble fragmentation, resulting in polyplex/lipid release and permeation of the endothelial lining, allowing the DNA vector to extravasate into tumor tissue. (4) Polyplex/lipid vector entry into a tumor cell may be due to (A) physical disruption of the cell membrane to allow passive entry into the cytoplasm, and (B) enhanced clatherin-mediated endocytotic uptake, where PEI facilitates interaction with the cell membrane. In the latter case, polyplex/lipid vectors are taken up into early endosomes (EE) and then trafficked into late endosomes (LE) or lysosomal compartments. PEI is thought to cause osmotic swelling and endosomal rupture (ER) via a proton-sponge effect [], allowing polyplex entry into the cytoplasm. Plasmid DNA dissociates from the PEI/lipid vector and enters the nucleus of the cell where the genes can be expressed []. (Reprinting with permission)
1 Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Progress in Polymer Science , 2007, 32(8–9): 962–990
doi: 10.1016/j.progpolymsci.2007.05.009
2 Deckers R, Moonen C T W. Ultrasound triggered, image guided, local drug delivery. Journal of Controlled Release , 2010, 148(1): 25–33
doi: 10.1016/j.jconrel.2010.07.117
3 Heath C H, Sorace A, Knowles J, Rosenthal E, Hoyt K. Microbubble therapy enhances anti-tumor properties of cisplatin and cetuximab in vitro and in vivo. Otolaryngology- Head and Neck Surgery , 2012, 146(6): 938–945
doi: 10.1177/0194599812436648
4 Bekeredjian R, Kroll R D, Fein E, Tinkov S, Coester C, Winter G, Katus H A, Kulaksiz H. Ultrasound targeted microbubble destruction increases capillary permeability in hepatomas. Ultrasound in Medicine & Biology , 2007, 33(10): 1592–1598
doi: 10.1016/j.ultrasmedbio.2007.05.003
5 Carson A R, McTiernan C F, Lavery L, Grata M, Leng X, Wang J, Chen X, Villanueva F S. Ultrasound-targeted microbubble destruction to deliver siRNA cancer therapy. Cancer Research , 2012, 72(23): 6191–6199
doi: 10.1158/0008-5472.CAN-11-4079
6 Chang S, Guo J, Sun J, Zhu S, Yan Y, Zhu Y, Li M, Wang Z, Xu R X. Targeted microbubbles for ultrasound mediated gene transfection and apoptosis induction in ovarian cancer cells. Ultrasonics Sonochemistry , 2013, 20(1): 171–179
doi: 10.1016/j.ultsonch.2012.06.015
7 Gao Z, Kennedy A M, Christensen D A, Rapoport N Y. Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics , 2008, 48(4): 260–270
doi: 10.1016/j.ultras.2007.11.002
8 Korpanty G, Chen S, Shohet R V, Ding J, Yang B, Frenkel P A, Grayburn P A. Targeting of VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction of microbubbles. Gene Therapy , 2005, 12(17): 1305–1312
doi: 10.1038/sj.gt.3302532
9 Park K. Microbubble ultrasound-guided targeted delivery to tumors. Journal of Controlled Release , 2012, 157(2): 167
doi: 10.1016/j.jconrel.2011.12.028
10 Korpanty G, Grayburn P A, Shohet R V, Brekken R A. Targeting vascular endothelium with avidin microbubbles. Ultrasound in Medicine & Biology , 2005, 31(9): 1279–1283
doi: 10.1016/j.ultrasmedbio.2005.06.001
11 Villanueva F S. Ultrasound mediated destruction of DNA-loaded microbubbles for enhancement of cell-based therapies. JACC: Cardiovascular Imaging , 2009, 2(7): 880–882
doi: 10.1016/j.jcmg.2009.05.006
12 Gao Z G, Fain H D, Rapoport N. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. Journal of Controlled Release , 2005, 102(1): 203–222
doi: 10.1016/j.jconrel.2004.09.021
13 Rapoport N, Gao Z, Kennedy A. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. Journal of the National Cancer Institute , 2007, 99(14): 1095–1106
doi: 10.1093/jnci/djm043
14 Gao Z, Fain H D, Rapoport N. Ultrasound-enhanced tumor targeting of polymeric micellar drug carriers. Molecular Pharmaceutics , 2004, 1(4): 317–330
doi: 10.1021/mp049958h
15 Dijkmans P, Juffermans L, Musters R, Vanwamel A, Tencate F, Vangilst W, Visser C, Dejong N, Kamp O. Microbubbles and ultrasound: from diagnosis to therapy. European Journal of Echocardiography , 2004, 5(4): 245–256
doi: 10.1016/j.euje.2004.02.001
16 Stride E, Saffari N. On the destruction of microbubble ultrasound contrast agents. Ultrasound in Medicine & Biology , 2003, 29(4): 563–573
doi: 10.1016/S0301-5629(02)00787-1
17 Basta G, Venneri L, Lazzerini G, Pasanisi E, Pianelli M, Vesentini N, Del Turco S, Kusmic C, Picano E. In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic cardiac ultrasound. Cardiovascular Research , 2003, 58(1): 156–161
doi: 10.1016/S0008-6363(02)00665-X
18 Wu J. Temperature rise generated by ultrasound in the presence of contrast agent. Ultrasound in Medicine & Biology , 1998, 24(2): 267–274
doi: 10.1016/S0301-5629(97)00246-9
19 Unger E C, Hersh E, Vannan M, Matsunaga T O, McCreery T. Local drug and gene delivery through microbubbles. Progress in Cardiovascular Diseases , 2001, 44(1): 45–54
doi: 10.1053/pcad.2001.26443
20 Liu Y, Miyoshi H, Nakamura M. Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery. Journal of Controlled Release , 2006, 114(1): 89–99
doi: 10.1016/j.jconrel.2006.05.018
21 Klibanov A L. Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging. Advanced Drug Delivery Reviews , 1999, 37(1-3): 139–157
doi: 10.1016/S0169-409X(98)00104-5
22 Fokong S, Theek B, Wu Z, Koczera P, Appold L, Jorge S, Resch-Genger U, van Zandvoort M, Storm G, Kiessling F, Lammers T. Image-guided, targeted and triggered drug delivery to tumors using polymer-based microbubbles. Journal of Controlled Release , 2012, 163(1): 75–81
doi: 10.1016/j.jconrel.2012.05.007
23 Zhao Y Z, Lu C T, Mei X G. Optimization of the preparation of sonogenic phospholipids-based microbubbles by using central composite experimental design and response surface methodology. Acta pharmaceutica Sinica , 2008, 43(8): 862–867 (in Chinese)
24 Wang D S, Panje C, Pysz M A, Paulmurugan R, Rosenberg J, Gambhir S S, Schneider M, Willmann J K. Cationic versus neutral microbubbles for ultrasound-mediated gene delivery in cancer. Radiology , 2012, 264(3): 721–732
doi: 10.1148/radiol.12112368
25 Higuchi Y, Kawakami S, Hashida M. Strategies for in vivo delivery of siRNAs: recent progress. BioDrugs , 2010, 24(3): 195–205
doi: 10.2165/11534450-000000000-00000
26 Carson A R, McTiernan C F, Lavery L, Hodnick A, Grata M, Leng X, Wang J, Chen X, Modzelewski R A, Villanueva F S. Gene therapy of carcinoma using ultrasound-targeted microbubble destruction. Ultrasound in Medicine & Biology , 2011, 37(3): 393–402
doi: 10.1016/j.ultrasmedbio.2010.11.011
27 Feril L B Jr. Ultrasound-mediated gene transfection. Methods in Molecular Biology (Clifton, N.J.) , 2009, 542: 179–194
doi: 10.1007/978-1-59745-561-9_10
29 Guo D P, Li X Y, Sun P, Tang Y B, Chen X Y, Chen Q, Fan L M, Zang B, Shao L Z, Li X R. Ultrasound-targeted microbubble destruction improves the low density lipoprotein receptor gene expression in HepG2 cells. Biochemical and Biophysical Research Communications , 2006, 343(2): 470–474
doi: 10.1016/j.bbrc.2006.02.179
30 Unger E C, Matsunaga T O, McCreery T, Schumann P, Sweitzer R, Quigley R. Therapeutic applications of microbubbles. European Journal of Radiology , 2002, 42(2): 160–168
doi: 10.1016/S0720-048X(01)00455-7
31 Liu Y, Yang H, Sakanishi A. Ultrasound: mechanical gene transfer into plant cells by sonoporation. Biotechnology Advances , 2006, 24(1): 1–16
doi: 10.1016/j.biotechadv.2005.04.002
32 Sirsi S R, Hernandez S L, Zielinski L, Blomback H, Koubaa A, Synder M, Homma S, Kandel J J, Yamashiro D J, Borden M A. Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors. Journal of Controlled Release , 2012, 157(2): 224–234
doi: 10.1016/j.jconrel.2011.09.071
33 Li X H, Zhou P, Wang L H, Tian S M, Qian Y, Chen L R, Zhang P. The targeted gene (KDRP-CD/TK) therapy of breast cancer mediated by SonoVue and ultrasound irradiation in vitro. Ultrasonics , 2012, 52(1): 186–191
doi: 10.1016/j.ultras.2011.08.002
34 Li Y S, Davidson E, Reid C N, McHale A P. Optimising ultrasound-mediated gene transfer (sonoporation) in vitro and prolonged expression of a transgene in vivo: potential applications for gene therapy of cancer. Cancer Letters , 2009, 273(1): 62–69
doi: 10.1016/j.canlet.2008.07.030
35 Luo J, Zhou X, Diao L, Wang Z. Experimental research on wild-type p53 plasmid transfected into retinoblastoma cells and tissues using an ultrasound microbubble intensifier. Journal of International Medical Research , 2010, 38(3): 1005–1015
36 Tang Q, He X, Liao H, He L, Wang Y, Zhou D, Ye S, Chen Q. Ultrasound microbubble contrast agent-mediated suicide gene transfection in the treatment of hepatic cancer. Oncology Letters , 2012, 4(5): 970–972
37 Wang J F, Wang J B, Chen H, Zhang C M, Liu L, Pan S H, Wu C J. Ultrasound-mediated microbubble destruction enhances gene transfection in pancreatic cancer cells. Advances in Therapy , 2008, 25(5): 412–421
doi: 10.1007/s12325-008-0051-9
38 Watanabe A, Otake R, Nozaki T, Morii A, Ogawa R, Fujimoto S, Nakamura S, Fuse H, Kondo T. Effects of microbubbles on ultrasound-mediated gene transfer in human prostate cancer PC3 cells: comparison among Levovist, YM454, and MRX-815H. Cancer Letters , 2008, 265(1): 107–112
doi: 10.1016/j.canlet.2008.02.004
39 Chen Z Y, Liang K, Qiu R X. Targeted gene delivery in tumor xenografts by the combination of ultrasound-targeted microbubble destruction and polyethylenimine to inhibit survivin gene expression and induce apoptosis. Journal of Experimental & Clinical Cancer Research , 2010, 29(1): 152–160
doi: 10.1186/1756-9966-29-152
40 Rahim A A, Taylor S L, Bush N L, ter Haar G R, Bamber J C, Porter C D. Spatial and acoustic pressure dependence of microbubble-mediated gene delivery targeted using focused ultrasound. Journal of Gene Medicine , 2006, 8(11): 1347–1357
doi: 10.1002/jgm.962
41 Rahim A, Taylor S L, Bush N L, ter Haar G R, Bamber J C, Porter C D. Physical parameters affecting ultrasound/microbubble-mediated gene delivery efficiency in vitro. Ultrasound in Medicine & Biology , 2006, 32(8): 1269–1279
doi: 10.1016/j.ultrasmedbio.2006.04.014
42 Bazan-Peregrino M, Arvanitis C D, Rifai B, Seymour L W, Coussios C C. Ultrasound-induced cavitation enhances the delivery and therapeutic efficacy of an oncolytic virus in an in vitro model. Journal of Controlled Release , 2012, 157(2): 235–242
doi: 10.1016/j.jconrel.2011.09.086
43 O Boussif F L h, M A Zanta, M D Mergny, D Scherman, B Demeneix, J PBehr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proceedings of the National Academy of Sciences of the United States of America , 1995, 92(16): 7297–7301
44 Cochran M C, Eisenbrey J, Ouma R O, Soulen M, Wheatley M A. Doxorubicin and paclitaxel loaded microbubbles for ultrasound triggered drug delivery. International Journal of Pharmaceutics , 2011, 414(1-2): 161–170
doi: 10.1016/j.ijpharm.2011.05.030
45 Hobbs S K, Monsky W L, Yuan F, Roberts W G, Griffith L, Torchilin V P, Jain R K. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proceedings of the National Academy of Sciences of the United States of America , 1998, 95(8): 4607–4612
doi: 10.1073/pnas.95.8.4607
46 Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release , 2000, 65(1-2): 271–284
doi: 10.1016/S0168-3659(99)00248-5
47 Ferrara K W, Borden M A, Zhang H. Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery. Accounts of Chemical Research , 2009, 42(7): 881–892
doi: 10.1021/ar8002442
48 Eisenbrey J R, Burstein O M, Kambhampati R, Forsberg F, Liu J B, Wheatley M A. Development and optimization of a doxorubicin loaded poly(lactic acid) contrast agent for ultrasound directed drug delivery. Journal of Controlled Release , 2010, 143(1): 38–44
doi: 10.1016/j.jconrel.2009.12.021
49 Mohan P, Rapoport N. Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking. Molecular Pharmaceutics , 2010, 7(6): 1959–1973
doi: 10.1021/mp100269f
50 Eisenbrey J R, Soulen M C, Wheatley M A. Delivery of encapsulated Doxorubicin by ultrasound-mediated size reduction of drug-loaded polymer contrast agents. IEEE Transactions on Bio-Medical Engineering , 2010, 57(1): 24–28
doi: 10.1109/TBME.2009.2030497
51 Lum A F, Borden M A, Dayton P A, Kruse D E, Simon S I, Ferrara K W. Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. Journal of Controlled Release , 2006, 111(1-2): 128–134
doi: 10.1016/j.jconrel.2005.11.006
53 Guibal A, Taillade L, Mule S, Comperat E, Badachi Y, Golmard J L, Le Guillou-Buffello D, Rixe O, Bridal S L, Lucidarme O. Noninvasive contrast-enhanced US quantitative assessment of tumor microcirculation in a murine model: effect of discontinuing anti-VEGF therapy. Radiology , 2010, 254(2): 420–429
doi: 10.1148/radiol.09090728
54 Leong-Poi H, Christiansen J, Klibanov A L, Kaul S, Lindner J R. Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins. Circulation , 2003, 107(3): 455–460
doi: 10.1161/01.CIR.0000044916.05919.8B
55 Hu G Q, Yang L, Xiao Y B, Xie J J, Wu J F, Cai J J, Liu J, Liao W J, Bin J P. Evaluation of tumor angiogenesis using microbubbles conjugated with RGD peptides and contrast enhanced ultrasound. Zhonghua Zhong Liu Za Zhi , 2010, 32(9): 655–658 (in Chinese)
56 Warram J M, Sorace A G, Saini R, Borovjagin A V, Hoyt K, Zinn K R. Systemic delivery of a breast cancer-detecting adenovirus using targeted microbubbles. Cancer Gene Therapy , 2012, 19(8): 545–552
doi: 10.1038/cgt.2012.29
57 Warram J M, Sorace A G, Saini R, Umphrey H R, Zinn K R, Hoyt K. A triple-targeted ultrasound contrast agent provides improved localization to tumor vasculature. Journal of Ultrasound in Medicine , 2011, 30(7): 921–931
58 Patan S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. Journal of Neuro-Oncology , 2000, 50(1-2): 1–15
doi: 10.1023/A:1006493130855
59 Patan S. Vasculogenesis and angiogenesis. Cancer Treatment and Research , 2004, 117: 3–32
doi: 10.1007/978-1-4419-8871-3_1
60 Price R J, Skyba D M, Kaul S, Skalak T C. Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation , 1998, 98(13): 1264–1267
doi: 10.1161/01.CIR.98.13.1264
61 Skyba D M, Price R J, Linka A Z, Skalak T C, Kaul S. Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue. Circulation , 1998, 98(4): 290–293
doi: 10.1161/01.CIR.98.4.290
62 Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, Waltari M, Hellstrom M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Yl?-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature , 2008, 454(7204): 656–660
doi: 10.1038/nature07083
63 Pysz M A, Foygel K, Rosenberg J, Gambhir S S, Schneider M, Willmann J K. Antiangiogenic cancer therapy: monitoring with molecular US and a clinically translatable contrast agent (BR55). Radiology , 2010, 256(2): 519–527
doi: 10.1148/radiol.10091858
64 Palmowski M, Huppert J, Ladewig G, Hauff P, Reinhardt M, Mueller M M, Woenne E C, Jenne J W, Maurer M, Kauffmann G, Semmler W, Kiessling F. Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects. Molecular Cancer Therapeutics , 2008, 7(1): 101–109
doi: 10.1158/1535-7163.MCT-07-0409
65 Anderson C R, Hu X, Zhang H, Tlaxca J, Decleves A E, Houghtaling R, Sharma K, Lawrence M, Ferrara K W, Rychak J J. Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent. Investigative Radiology , 2011, 46(4): 215–224
doi: 10.1097/RLI.0b013e3182034fed
67 Fan C H, Ting C Y, Liu H L, Huang C Y, Hsieh H Y, Yen T C, Wei K C, Yeh C K. Antiangiogenic-targeting drug-loaded microbubbles combined with focused ultrasound for glioma treatment. Biomaterials , 2013, 34(8): 2142–2155
doi: 10.1016/j.biomaterials.2012.11.048
68 Williams R, Hudson J M, Lloyd B A, Sureshkumar A R, Lueck G, Milot L, Atri M, Bjarnason G A, Burns P N. Dynamic microbubble contrast-enhanced US to measure tumor response to targeted therapy: a proposed clinical protocol with results from renal cell carcinoma patients receiving antiangiogenic therapy. Radiology , 2011, 260(2): 581–590
doi: 10.1148/radiol.11101893
69 Sirsi S R, Flexman M L, Vlachos F, Huang J, Hernandez S L, Kim H K, Johung T B, Gander J W, Reichstein A R, Lampl B, Wang A, Hielscher A H, Kandel J J, Yamashiro D J, Borden M A. Contrast ultrasound imaging for identification of early responder tumor models to anti-angiogenic therapy. Ultrasound in Medicine & Biology , 2012, 38(6): 1019–1029
doi: 10.1016/j.ultrasmedbio.2012.01.014
70 Rix A, Lederle W, Siepmann M, Fokong S, Behrendt F F, Bzyl J, Grouls C, Kiessling F, Palmowski M. Evaluation of high frequency ultrasound methods and contrast agents for characterising tumor response to anti-angiogenic treatment. European Journal of Radiology , 2012, 81(10): 2710–2716
doi: 10.1016/j.ejrad.2011.10.004
[1] Jayshree Ashree, Qi Wang, Yimin Chao. Glyco-functionalised quantum dots and their progress in cancer diagnosis and treatment[J]. Front. Chem. Sci. Eng., 2020, 14(3): 365-377.
[2] Grant Perry, Fernando Cortezon-Tamarit, Sofia I. Pascu. Detection and monitoring prostate specific antigen using nanotechnology approaches to biosensing[J]. Front. Chem. Sci. Eng., 2020, 14(1): 4-18.
[3] Annemie Bogaerts, Maksudbek Yusupov, Jamoliddin Razzokov, Jonas Van der Paal. Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling[J]. Front. Chem. Sci. Eng., 2019, 13(2): 253-263.
[4] Andrew Best,Katherine James,Gerald Hysenaj,Alison Tyson-Capper,David J. Elliott. Transformer2 proteins protect breast cancer cells from accumulating replication stress by ensuring productive splicing of checkpoint kinase 1[J]. Front. Chem. Sci. Eng., 2016, 10(2): 186-195.
[5] Wei Wang,Bhavitavya Nijampatnam,Sadanandan E. Velu,Ruiwen Zhang. Discovery and development of synthetic tricyclic pyrroloquinone (TPQ) alkaloid analogs for human cancer therapy[J]. Front. Chem. Sci. Eng., 2016, 10(1): 1-15.
[6] Jacqueline CONCHA, Caroline WEINSTEIN, María Elvira Zú?IGA. Production of pectic extracts from sugar beet pulp with antiproliferative activity on a breast cancer cell line[J]. Front Chem Sci Eng, 2013, 7(4): 482-489.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed