Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (2) : 233-248    https://doi.org/10.1007/s11705-013-1329-2
REVIEW ARTICLE
Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion
Jie ZHU1,2, Xiangju MENG1, Fengshou XIAO1()
1. Department of Chemistry, Zhejiang University, Hangzhou 310028, China; 2. College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
 Download: PDF(862 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Zeolites have been regarded as one of the most important catalysts in petrochemical industry due to their excellent catalytic performance. However, the sole micropores in zeolites severely limit their applications in oil refining and natural gas conversion. To solve the problem, mesoporous zeolites have been prepared by introducing mesopores into the zeolite crystals in recent years, and thus have the advantages of both mesostructured materials (fast diffusion and accessible for bulky molecules) and microporous zeolite crystals (strong acidity and high hydrothermal stability). In this review, after giving a brief introduction to preparation, structure, and characterization of mesoporous zeolites, we systematically summarize catalytic applications of these mesoporous zeolites as efficient catalysts in oil refining and natural gas conversion including catalytic cracking of heavy oil, alkylation, isomerization, hydrogenation, hydrodesulfurization, methane dehydroaromatization, methanol dehydration to dimethyl ether, methanol to olefins, and methanol to hydrocarbons.

Keywords mesoporous zeolite      catalysis      oil refining      natural gas conversion     
Corresponding Author(s): XIAO Fengshou,Email:fsxiao@zju.edu.cn   
Issue Date: 05 June 2013
 Cite this article:   
Jie ZHU,Xiangju MENG,Fengshou XIAO. Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion[J]. Front Chem Sci Eng, 2013, 7(2): 233-248.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1329-2
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I2/233
Fig.1  Schematic illustration of 3Dom-i zeolite templating from 3Dom carbon. Reproduced by permission of Ref []. Copyright 2011 American Chemical Society
Fig.2  HRTEM of as-synthesized (a) and calcined (b) MFI nanosheet templated from C surfanctant. Reproduced by permission of Ref. []. (Copyright 2009 Nature Publishing Group)
Fig.3  Proposed reaction of 1,3,5-triisopropylbenzene cracking
Fig.4  Catalytic properties of conventional ZSM-5 and meso ZSM-5 employed in the cracking of TIPB (1,3,5-triisopropylbenzene) as a probe reaction: (a) deactivation behavior at 500°C, and (b) catalytic activities (conversions) at different temperatures. Reproduced by permission of Ref []. (Copyright 2011 American Chemical Society)
Fig.5  Proposed reaction of benzene alkylation with ethylene
Fig.6  Catalytic conversions (. Wt-%) and selectivities (. Wt-%) in the alkylation of benzene with 2-propanol with various zeolites samples as a function of reaction time (Reaction temperature: 200°C; 4 ∶ 1 benzene/2-propanol; reaction pressure: 2.0 MP, weight hourly spare velocity (WHSV): 10 h). Reproduced by permission of Ref. []. (Copyright 2006 Wiley)
SubstratesMesoporous zeolitesSynthesis strategiesConversion /%Isomer selectivity /%Ref.
n-HexaneZSM-5/MCM-41Recrystallization in base solution22 (22)*90 (81) [89]
n-HexaneZSM-5betaDesilication68 (59)73 (53)97 (96)98 (91) [90]
n-HeptaneZSM-12betaHard template38 (10)55 (23) [91]
n-OctaneZSM-22Desilication78 (67)75 (<65) [92]
n-OctaneSAPO-11Soft template43 (43)98 (88) [93]
n-OctaneY-βRecrystallization52 (14)76 (54) [94]
n-HexadecaneITQ-6Delamination80 (30)62 (42) [95]
Tab.1  Catalytic activities in isomerization of linear paraffins over mesoporous zeolite catalysts
Fig.7  Dependence of (a) the isomer selectivity, (b) the percentage of di-branched C isomers in total C isomers (denoted as DB), and (c) the cracking selectivity of -octane in -octane-hydroisomerization system on -octane conversion over conventional Pt/H-SAPO-11 and mesoporous Pt/H-SAPO-11-HI catalysts. Reproduced by permission of Ref []. (Copyright 2012 Elsevier)
Fig.8  Dependence of (a) the 4,6-DMDBT conversion and (b) the remaining sulfur content in 4,6-DMDBT-hydrogenation system on reaction time over Pd/HY-M, Pd/Hbeta-M, Pd/HZSM-5-M, Pd/HY, Pd/NaY-M and Pd/γ-AlO catalysts. Reproduced by permission of Ref. []. (Copyright 2011 American Chemical Society)
Fig.9  (a) Catalytic performances of mesoporous Mo/HMCM-22-HS and conventional Mo/HMCM-22 catalysts in methane dehydroaromatization; (b) formation rates of benzene at 700°C on these two catalysts under space velocity of 1500 mL/(g?h). Reproduced by permission of Ref. []. (Copyright 2010 American Chemical Society)
Fig.10  Stability and selectivity in methanol dehydration over ZSM-5 and ZSM-5/MCM-41 composite alkali-treated by NaOH solution 1.5 mol/L. Reproduced by permission of Ref. []. (Copyright 2012 Elsevier)
Fig.11  Catalytic conversion of methanol to dimethyl ether (DME) over conventional CaA-0 (a) and mesoporous CaA-2 (b) zeolites at 400°C. Methanol conversion was calculated by considering DME and hydrocarbons as converted products. Reproduced by permission of Ref. []. (Copyright 2009 American Chemical Society)
Fig.12  Product selectivity of mesoporous HZSM-5 by alkaline treatment as a representative catalyst for MTP reaction as a function of time: CH, CH, CH, aromatics, C1–C4 saturated hydrocarbons, C5 and higher hydrocarbons excluding aromatics. Reaction conditions: = 470°C, WHSV= 1 h, = 0.5 atm, HO: CHOH= 1 ∶ 1. Reproduced by permission of Ref. []. (Copyright 2008 Elsevier)
Fig.13  (a) and (b) SEM images of the hierarchical mesoporous SAPO-34 zeolite at different magnifications; (c) SAED pattern of a horizontal mesoporous zeolite slice; (d) nitrogen sorption isotherms and BJH pore size distribution (inset). Reproduced by permission of Ref. []. (Copyright 2009 Royal Soc Chemistry)
Fig.14  Coke deposition over (a) conventional MFI zeolite and (b) unilamellar MFI zeolite catalysts during MTG conversion. Catalytic conversion over the unilamellar MFI was repeatedly investigated using three different synthesis batches (red circles, black squares, open circles, respectively). The catalytic measurement for conventional zeolite was repeated twice using the same sample (red circles and black squares). The solid black lines and the dotted red and black lines are guides to the eye. Dark blue bars indicate internal (inside the micropores of the zeolite) coke content, and light blue bars indicate external coke content. Reproduced by permission of []. (Copyright 2009 Nature)
1 Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews , 1997, 97(6): 2373-2420
doi: 10.1021/cr960406n
2 Davis M E. Ordered porous materials for emerging applications. Nature , 2002, 417(6891): 813-821
doi: 10.1038/nature00785
3 Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chemical Reviews , 2003, 103(3): 663-702
doi: 10.1021/cr020060i
4 Hartmann M. Hierarchical zeolites: A proven strategy to combine shape selectivity with efficient mass transport. Angewandte Chemie International Edition , 2004, 43(44): 5880-5882
doi: 10.1002/anie.200460644
5 Perez-Ramirez J, Kapteijn F, Groen J C, Domenech A, Mul G, Moulijn J A. Steam-activated FeMFI zeolites. Evolution of iron species and activity in direct N2O decomposition. Journal of Catalysis , 2003, 214(1): 33-45
doi: 10.1016/S0021-9517(02)00021-0
6 Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature , 1992, 359(6397): 710-712
doi: 10.1038/359710a0
7 Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. Journal of the American Chemical Society , 1992, 114(27): 10834-10843
doi: 10.1021/ja00053a020
8 Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science , 1998, 279(5350): 548-552
doi: 10.1126/science.279.5350.548
9 Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society , 1998, 120(24): 6024-6036
doi: 10.1021/ja974025i
10 Davis M E. Introduction to large-pore molecular-sieves. Catalysis Today , 1994, 19(1): 1-5
doi: 10.1016/0920-5861(94)85001-1
11 Liu Y, Zhang W Z, Pinnavaia T J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds. Journal of the American Chemical Society , 2000, 122(36): 8791-8792
doi: 10.1021/ja001615z
12 Liu Y, Zhang W Z, Pinnavaia T J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds. Angewandte Chemie International Edition , 2001, 40(7): 1255-1258
doi: 10.1002/1521-3773(20010401)40:7<1255::AID-ANIE1255>3.0.CO;2-U
13 Zhang Z T, Han Y, Zhu L, Wang R W, Yu Y, Qiu S L, Zhao D Y, Xiao F S. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure. Angewandte Chemie International Edition , 2001, 40(7): 1258-1262
doi: 10.1002/1521-3773(20010401)40:7<1258::AID-ANIE1258>3.0.CO;2-C
14 Xiao F S, Han Y, Yu Y, Meng X J, Yang M, Wu S. Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites. Journal of the American Chemical Society , 2002, 124(6): 888-889
doi: 10.1021/ja0170044
15 Han Y, Li D F, Zhao L, Song J W, Yang X Y, Li N, Di Y, Li C J, Wu S, Xu X Z, Meng X J, Lin K F, Xiao F S. High-temperature generalized synthesis of stable ordered mesoporous silica-based materials by using fluorocarbon-hydrocarbon surfactant mixtures. Angewandte Chemie International Edition , 2003, 42(31): 3633-3637
doi: 10.1002/anie.200351466
16 Li D F, Han Y, Song J W, Zhao L, Xu X Z, Di Y, Xiao F S. High-temperature synthesis of stable ordered mesoporous silica materials by using fluorocarbon-hydrocarbon surfactant mixtures. Chemistry (Weinheim an der Bergstrasse, Germany) , 2004, 10(23): 5911-5922
doi: 10.1002/chem.200400188
17 Tao Y S, Kanoh H, Abrams L, Kaneko K. Mesopore-modified zeolites: Preparation, characterization, and applications. Chemical Reviews , 2006, 106(3): 896-910
doi: 10.1021/cr040204o
18 Xia Y D, Mokaya R. Are mesoporous silicas and aluminosilicas assembled from zeolite seeds inherently hydrothermally stable? Comparative evaluation of MCM-48 materials assembled from zeolite seeds. Journal of Materials Chemistry , 2004, 14(23): 3427-3435
doi: 10.1039/b408960j
19 Tosheva L, Valtchev V P. Nanozeolites: Synthesis, crystallization mechanism, and applications. Chemistry of Materials , 2005, 17(10): 2494-2513
doi: 10.1021/cm047908z
20 Schoeman B J, Sterte J, Otterstedt J E. Colloid Zeolite Suspensions. Zeolites , 1994, 14(2): 110-116
doi: 10.1016/0144-2449(94)90004-3
21 Freyhardt C C, Tsapatsis M, Lobo R F, Balkus K J Jr, Davis M E. A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature , 1996, 381(6580): 295-298
doi: 10.1038/381295a0
22 Davis M E, Saldarriaga C, Montes C, Garces J, Crowder C. A molecular-sieve with 18-membered rings. Nature , 1988, 331(6158): 698-699
doi: 10.1038/331698a0
23 Corma A, Diaz-Cabanas M J, Jorda J L, Martinez C, Moliner M. High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature , 2006, 443(7113): 842-845
doi: 10.1038/nature05238
24 Huo Q H, Xu R R, Li S G, Ma Z G, Thomas J M, Jones R H, Chippindale A M. Synthesis and characterization of a novel extra large ring of aluminophosphate JDF-20. Journal of the Chemical Society. Chemical Communications , 1992, (12): 875-876
doi: 10.1039/c39920000875
25 Sun J L, Bonneau C, Cantin A, Corma A, Diaz-Cabanas M J, Moliner M, Zhang D L, Li M R, Zou X D. The ITQ-37 mesoporous chiral zeolite. Nature , 2009, 458(7242): 1154-1157
doi: 10.1038/nature07957
26 Jiang J X, Jorda J L, Yu J H, Baumes L A, Mugnaioli E, Diaz-Cabanas M J, Kolb U, Corma A. Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science , 2011, 333(6046): 1131-1134
doi: 10.1126/science.1208652
27 Meng X J, Nawaz F, Xiao F S. Templating route for synthesizing mesoporous zeolites with improved catalytic properties. Nano Today , 2009, 4(4): 292-301
doi: 10.1016/j.nantod.2009.06.002
28 van Donk S, Janssen A H, Bitter J H, de Jong K P. Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews. Science and Engineering , 2003, 45(2): 297-319
doi: 10.1081/CR-120023908
29 Perez-Ramirez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews , 2008, 37(11): 2530-2542
doi: 10.1039/b809030k
30 Egeblad K, Christensen C H, Kustova M, Christensen C H. Templating mesoporous zeolites. Chemistry of Materials , 2008, 20(3): 946-960
doi: 10.1021/cm702224p
31 Chal R, Gerardin C, Bulut M, van Donk S. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem , 2011, 3(1): 67-81
doi: 10.1002/cctc.201000158
32 Holm M S, Taarning E, Egeblad K, Christensen C H. Catalysis with hierarchical zeolites. Catalysis Today , 2011, 168(1): 3-16
doi: 10.1016/j.cattod.2011.01.007
33 Lynch J, Raatz F, Dufresne P. Characterization of the textural properties of dealuminated HY forms. Zeolites , 1987, 7(4): 333-340
doi: 10.1016/0144-2449(87)90036-4
34 Triantafillidis C S, Vlessidis A G, Evmiridis N P. Dealuminated H-Y zeolites: Influence of the degree and the type of dealumination method on the structural and acidic characteristics of H-Y zeolites. Industrial & Engineering Chemistry Research , 2000, 39(2): 307-319
doi: 10.1021/ie990568k
35 Groen J C, Bach T, Ziese U, Donk A M P V, de Jong K P, Moulijn J A, Perez-Ramirez J. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. Journal of the American Chemical Society , 2005, 127(31): 10792-10793
doi: 10.1021/ja052592x
36 Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. Journal of the American Chemical Society , 2000, 122(29): 7116-7117
doi: 10.1021/ja000744c
37 Kustova M, Hasselriis P, Christensen C H. Mesoporous MEL-type zeolite single crystal catalysts. Catalysis Letters , 2004, 96(3-4): 205-211
doi: 10.1023/B:CATL.0000030122.37779.f4
38 Wei X, Smirniotis P G. Synthesis and characterization of mesoporous ZSM-12 by using carbon particles. Microporous and Mesoporous Materials , 2006, 89(1-3): 170-178
doi: 10.1016/j.micromeso.2005.09.030
39 Schmidt I, Boisen A, Gustavsson E, Stahl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chemistry of Materials , 2001, 13(12): 4416-4418
doi: 10.1021/cm011206h
40 Boisen A, Schmidt I, Carlsson A, Dahl S, Brorson M, Jacobsen C J H. TEM stereo-imaging of mesoporous zeolite single crystals. Chemical Communications , 2003, (8): 958-959
doi: 10.1039/b212646j
41 Janssen A H, Schmidt I, Jacobsen C J H, Koster A J, de Jong K P. Exploratory study of mesopore templating with carbon during zeolite synthesis. Microporous and Mesoporous Materials , 2003, 65(1): 59-75
doi: 10.1016/j.micromeso.2003.07.003
42 Tao Y S, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society , 2003, 125(20): 6044-6045
doi: 10.1021/ja0299405
43 Tao Y S, Kanoh H, Kaneko K. Uniform mesopore-donated zeolite Y using carbon aerogel templating. Journal of Physical Chemistry B , 2003, 107(40): 10974-10976
doi: 10.1021/jp0356822
44 Tao Y S, Kanoh H, Kaneko K. Synthesis of mesoporous zeolite a by resorcinol-formaldehyde aerogel templating. Langmuir , 2005, 21(2): 504-507
doi: 10.1021/la047686j
45 Tao Y S, Hattori Y, Matumoto A, Kaneko K. Comparative study on pore structures of mesoporous ZSM-5 from resorcinol-formaldehyde aerogel and carbon aerogel templating. Journal of Physical Chemistry B , 2005, 109(1): 194-199
doi: 10.1021/jp0464167
46 Cho S I, Choi S D, Kim J H, Kim G J. Synthesis of zsm-5 films and monoliths with bimodal micro/mesoscopic structures. Advanced Functional Materials , 2004, 14(1): 49-54
doi: 10.1002/adfm.200305118
47 Yang Z X, Xia Y D, Mokya R. Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template. Advanced Materials , 2004, 16(8): 727-732
doi: 10.1002/adma.200306295
48 Sakhtivel A, Huang S J, Chen W H, Lan Z H, Chen K H, Kim T W, Ryoo R, Chiang A S T, Liu S B. Replication of mesoporous aluminosilicate molecular sieves (RMMs) with zeolite framework from mesoporous carbons (CMKs). Chemistry of Materials , 2004, 16(16): 3168-3175
doi: 10.1021/cm035293k
49 Fan W, Synder M A, Kumar S, Lee P S, Yoo W C, McCormick A V, Penn R L, Stein A, Tsapatsis M. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nature Materials , 2008, 7(12): 984-991
doi: 10.1038/nmat2302
50 Lee P S, Zhang X Y, Stoeger J A, Malek A, Fan W, Kumar S, Yoo W C, Al Hashimi S, Penn R L, Stein A, Tsapatsis M. Sub-40 nm zeolite suspensions via disassembly of three-dimensionally ordered mesoporous-imprinted silicalite-1. Journal of the American Chemical Society , 2011, 133(3): 493-502
doi: 10.1021/ja107942n
51 Chen H Y, Wydra J, Zhang X Y, Lee P S, Wang Z P, Fan W, Tsapatsis M. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of the American Chemical Society , 2011, 133(32): 12390-12393
doi: 10.1021/ja2046815 pmid:Fan WTsapatsis M
52 Li H C, Sakamoto Y, Liu Z, Ohsuna T, Terasaki O, Thommes M, Che S N. Mesoporous silicalite-1 zeolite crystals with unique pore shapes analogous to the morphology. Microporous and Mesoporous Materials , 2007, 106(1-3): 174-179
doi: 10.1016/j.micromeso.2007.02.054
53 Cho H S, pmid:Ryoo R. Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous and Mesoporous Materials , 2012, 151: 107-112
doi: 10.1016/j.micromeso.2011.11.007 pmid:Ryoo R
54 Zhu H, Liu Z, Wang Y, Kong D, Yuan X, Xie Z. Nanosized CaCO3 as hard template for creation of intracrystal pores within silicalite-1 crystal. Chemistry of Materials , 2008, 20(3): 1134-1139
doi: 10.1021/cm071385o
55 Xiao F S, Wang L F, Yin C Y, Lin K F, Di Y, Li J X, Xu R R, Su D S, Schlogl R, Yokoi T, Tatsumi T. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie International Edition , 2006, 45(19): 3090-3093
doi: 10.1002/anie.200600241
56 Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials , 2006, 5(9): 718-723
doi: 10.1038/nmat1705
57 Choi M, Srivastava R, Ryoo R. Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks. Chemical Communications , 2006, (42): 4380-4382
doi: 10.1039/b612265e
58 Srivastava R, Choi M, Ryoo R. Mesoporous materials with zeolite framework: remarkable effect of the hierarchical structure for retardation of catalyst deactivation. Chemical Communications , 2006, (43): 4489-4491
doi: 10.1039/b612116k
59 Wang H, Pinnavaia T J. MFI zeolite with small and uniform intracrystal mesopores. Angewandte Chemie International Edition , 2006, 45(45): 7603-7606
doi: 10.1002/anie.200602595
60 Zhu H B, Liu Z C, Kong D J, Wang Y D, Xie Z K. Synthesis and catalytic performances of mesoporous zeolites templated by polyvinyl butyral gel as the mesopore directing agent. Journal of Physical Chemistry C , 2008, 112(44): 17257-17264
doi: 10.1021/jp805766m
61 Fu W Q, Zhang L, Tang T D, Ke Q P, Wang S, Hu J B, Fang G Y, Li J X, Xiao F S. Extraordinarily high activity in the hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pd supported on mesoporous zeolite Y. Journal of the American Chemical Society , 2011, 133(39): 15346-15349
doi: 10.1021/ja2072719
62 Zhu Y, Hua Z L, Zhou J, Wang L J, Zhao J J, Gong Y, Wu W, Ruan M L, Shi J L. Hierarchical mesoporous zeolites: Direct self-Assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation. Chemistry (Weinheim an der Bergstrasse, Germany) , 2011, 17(51): 14618-14627
doi: 10.1002/chem.201101401
63 Zhou J, Hua Z L, Liu Z C, Wu W, Zhu Y, Shi J L. Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties. Acs Catalysis , 2011, 1(4): 287-291
doi: 10.1021/cs1000976
64 Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature , 2009, 461(7261): 246-250
doi: 10.1038/nature08288
65 Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. Pillared MFI zeolite nanosheets of a single-unit-cell thickness. Journal of the American Chemical Society , 2010, 132(12): 4169-4177
doi: 10.1021/ja908382n
66 Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger R J, Chmelka B F, Ryoo R. Directing zeolite structures into hierarchically nanoporous architectures. Science , 2011, 333(6040): 328-332
doi: 10.1126/science.1204452
67 Liu F J, Willhammar T, Wang L, Zhu L F, Sun Q, Meng X J, Carrillo-Cabrera W, Zou X D, Xiao F S. ZSM-5 zeolite single crystals with b-axis-aligned mesoporous channels as an efficient catalyst for conversion of bulky organic molecules. Journal of the American Chemical Society , 2012, 134(10): 4557-4560
doi: 10.1021/ja300078q
68 Kung H H, Williams B A, Babitz S M, Miller J T, Haag W O, Snurr R Q. Enhanced hydrocarbon cracking activity of Y zeolites. Topics in Catalysis , 2000, 10(1-2): 59-64
doi: 10.1023/A:1019155832086
69 Haag W O, Lago R M, Weisz P B. Transport and reactivity of hydrocarbon molecules in a shape-selective zeolite. Faraday Discussions , 1981, 72: 317-330
doi: 10.1039/dc9817200317
70 Garcia-Martinez J, Johnson M, Valla J, Li K H, Ying J Y. Mesostructured zeolite Y-high hydrothermal stability and superior FCC catalytic performance. Catalysis Science & Technology , 2012, 2(5): 987-994
doi: 10.1039/c2cy00309k
71 Tan Q F, Fan Y, Liu H Y, Song T C, Shi G, Shen B J, Bao X. Bimodal micro-mesoporous aluminosilicates for heavy oil cracking: Porosity tuning and catalytic properties. AIChE Journal. American Institute of Chemical Engineers , 2008, 54(7): 1850-1859
doi: 10.1002/aic.11512 pmid:Bao X J
72 Siddiqui M A B, Aitani A M, Saeed M R, Al-Yassir N, Al-Khattaf S. Enhancing propylene production from catalytic cracking of Arabian Light VGO over novel zeolites as FCC catalyst additives. Fuel , 2011, 90(2): 459-466
doi: 10.1016/j.fuel.2010.09.041
73 Park D H, Kim S S, Wang H, Pinnavaia T J, Papapetrou M C, Lappas A A, Triantafyllidis K S. Selective petroleum refining over a zeolite catalyst with small intracrystal mesopores. Angewandte Chemie International Edition , 2009, 48(41): 7645-7648
doi: 10.1002/anie.200901551
74 Wang L F, Yin C Y, Shan Z C, Liu S, Du Y C, Xiao F S. Bread-template synthesis of hierarchical mesoporous ZSM-5 zeolite with hydrothermally stable mesoporosity. Colloids and Surfaces A , 2009, 340(1-3): 126-130
doi: 10.1016/j.colsurfa.2009.03.013
75 Lei Q, Zhao T B, Li F Y, Zhang L L, Wang Y. Catalytic cracking of large molecules over hierarchical zeolites. Chemical Communications (Cambridge) , 2006, (16): 1769-1771
doi: 10.1039/b600547k
76 Christensen C H, Schmidt I, Christensen C H. Improved performance of mesoporous zeolite single crystals in catalytic cracking and isomerization of n-hexadecane. Catalysis Communications , 2004, 5(9): 543-546
doi: 10.1016/j.catcom.2004.07.003
77 Kustova M, Egeblad K, Christensen C H, Kustov A L, Christensen C H. Hierarchical zeolites: Progress on synthesis and characterization of mesoporous zeolite single crystal catalysts. Studies in Surface Science and Catalysis , 2007, 170: 267-275
doi: 10.1016/S0167-2991(07)80848-2
79 Shetti V N, Kim J, Srivastava R, Choi M, Ryoo R. Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures. Journal of Catalysis , 2008, 254(2): 296-303
doi: 10.1016/j.jcat.2008.01.006
80 Christensen C H, Johannsen K, Schmidt I, Christensen C H. Catalytic benzene alkylation over mesoporous zeolite single crystals: Improving activity and selectivity with a new family of porous materials. Journal of the American Chemical Society , 2003, 125(44): 13370-13371
doi: 10.1021/ja037063c
81 Christensen C H, Johannsen K, Toernqvist E, Schmidt I, Topsoe H, Christensen C H. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites. Catalysis Today , 2007, 128(1-2): 117-122
doi: 10.1016/j.cattod.2007.06.082
82 Perez-Ramirez J, Verboekend D, Bonilla A, Abello S. Zeolite Catalysts with tunable hierarchy factor by pore-growth moderators. Advanced Functional Materials , 2009, 19(24): 3972-3979
doi: 10.1002/adfm.200901394
83 van Iaak A N C, Gosselink R W, Sagala S L, Meeldijk J D, de Jongh P E, de Jong K P. Alkaline treatment on commercially available aluminum rich mordenite. Applied Catalysis A, General , 2010, 382(1): 65-72
doi: 10.1016/j.apcata.2010.04.023
84 van Laak A N C, Sagala S L, Zecevic J, Friedrich H, de Jongh P E, de Jong K P. Mesoporous mordenites obtained by sequential acid and alkaline treatments—Catalysts for cumene production with enhanced accessibility. Journal of Catalysis , 2010, 276(1): 170-180
doi: 10.1016/j.jcat.2010.09.011
85 Pellet R J, Casey D G, Huang H M, Kessler R V, Kuhlman E J, Oyoung C L, Sawicki R A, Ugolini J R. Isomerization of n-butene to isobutene by ferrierite and modified ferrierite catalysts. Journal of Catalysis , 1995, 157(2): 423-435
doi: 10.1006/jcat.1995.1308
86 Khitev Y P, Kolyagin Y G, Ivanova I I, Ponomareva O A, Thibault-Starzyk F, Gilson J P, Fernandez C, Fajula F. Synthesis and catalytic properties of hierarchical micro/mesoporous materials based on FER zeolite. Microporous and Mesoporous Materials , 2011, 146(1-3): 201-207
doi: 10.1016/j.micromeso.2011.05.003
87 Matias P, Couto C S, Graca I, Lopes J M, Carvalho A P, Ribeiro F R, Guisnet M. Desilication of a TON zeolite with NaOH: Influence on porosity, acidity and catalytic properties. Applied Catalysis A, General , 2011, 399(1-2): 100-109
doi: 10.1016/j.apcata.2011.03.049
88 van Donk S, Broersma A, Gijzeman O L J, van Bokhoven J A, Bitter J H, de Jong K P. Combined diffusion, adsorption, and reaction studies of n-hexane hydroisomerization over Pt/H-mordenite in an oscillating microbalance. Journal of Catalysis , 2001, 204(2): 272-280
doi: 10.1006/jcat.2001.3393
89 Chao P H, Tsai S T, Chang S L, Wang I, Tsai T C. Hexane isomerization over hierarchical Pt/MFI zeolite. Topics in Catalysis , 2010, 53(1-2): 231-237
doi: 10.1007/s11244-009-9416-9
90 Modhera B K, Chakraborty M, Bajaj H C, Parikh P A. Influences of mesoporosity generation in ZSM-5 and zeolite beta on catalytic performance during n-hexane isomerization. Catalysis Letters , 2011, 141(8): 1182-1190
doi: 10.1007/s10562-011-0610-6
91 Moushey D L, Smirniotis P G. n-Heptane hydroisomerization over mesoporous zeolites made by utilizing carbon particles as the template for mesoporosity. Catalysis Letters , 2009, 129(1-2): 20-25
doi: 10.1007/s10562-008-9836-3
92 Verboekend D, Thomas K, Milina M, Mitchell S, Perez-Ramirez J, Gilson J P. Towards more efficient monodimensional zeolite catalysts: n-Alkane hydro-isomerisation on hierarchical ZSM-22. Catalysis Science & Technology , 2011, 1(8): 1331-1335
doi: 10.1039/c1cy00240f
93 Fan Y, Xiao H, Shi G, Liu H Y, Bao X J. Alkylphosphonic acid- and small amine-templated synthesis of hierarchical silicoaluminophosphate molecular sieves with high isomerization selectivity to di-branched paraffins. Journal of Catalysis , 2012, 285(1): 251-259
doi: 10.1016/j.jcat.2011.09.037
94 Qin B, Zhang X W, Zhang Z Z, Ling F X, Sun W F. Synthesis, characterization and catalytic properties of Y-beta zeolite composites. Petroleum Science , 2011, 8(2): 224-228
doi: 10.1007/s12182-011-0139-8
95 Chica A, Diaz U, Fornes V, Corma A. Changing the hydroisomerization to hydrocracking ratio of long chain alkanes by varying the level of delamination in zeolitic (ITQ-6) materials. Catalysis Today , 2009, 147(3-4): 179-185
doi: 10.1016/j.cattod.2008.10.046
96 Fernandez C, Stan I, Gilson J P, Thomas K, Vicente A, Bonilla A, Perez-Ramirez J. Hierarchical ZSM-5 zeolites in shape-selective xylene isomerization: Role of mesoporosity and acid site speciation. Chemistry (Weinheim an der Bergstrasse, Germany) , 2010, 16(21): 6224-6233
doi: 10.1002/chem.200903426
97 Mihalyi R M, Kollar M, Kiraly P, Karoly Z, Mavrodinova V. Effect of extra-framework Al formed by successive steaming and acid leaching of zeolite MCM-22 on its structure and catalytic performance. Applied Catalysis A, General , 2012, 417: 76-86
doi: 10.1016/j.apcata.2011.12.029
98 Tang T D, Yin C Y, Wang L F, Ji Y Y, Xiao F S. Superior performance in deep saturation of bulky aromatic pyrene over acidic mesoporous beta zeolite-supported palladium catalyst. Journal of Catalysis , 2007, 249(1): 111-115
doi: 10.1016/j.jcat.2007.03.031
99 Tang T D, Yin C Y, Wang L F, Ji Y Y, Xiao F S. Good sulfur tolerance of a mesoporous beta zeolite-supported palladium catalyst in the deep hydrogenation of aromatics. Journal of Catalysis , 2008, 257(1): 125-133
doi: 10.1016/j.jcat.2008.04.013
100 Sun Y Y, Prins R. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over noble metals supported on mesoporous zeolites. Angewandte Chemie International Edition , 2008, 47(44): 8478-8481
doi: 10.1002/anie.200802540
101 Zheng J J, Zeng Q H, Zhang Y Y, Wang Y, Ma J H, Zhang X W, Sun W F, Li R F. Hierarchical porous zeolite composite with a core-shell structure fabricated using beta-zeolite crystals as nutrients as well as cores. Chemistry of Materials , 2010, 22(22): 6065-6074
doi: 10.1021/cm101418z
102 Xu Y D, Lin L W. Recent advances in methane dehydro-aromatization over transition metal ion-modified zeolite catalysts under non-oxidative conditions. Applied Catalysis A, General , 1999, 188(1-2): 53-67
doi: 10.1016/S0926-860X(99)00210-0
103 Su L L, Liu L, Zhuang J Q, Wang H X, Li Y G, Shen W J, Xu Y D, Bao X H. Creating mesopores in ZSM-5 zeolite by alkali treatment: A new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts. Catalysis Letters , 2003, 91(3-4): 155-167
doi: 10.1023/B:CATL.0000007149.48132.5a
104 Chu N B, Yang J H, Li C Y, Cui J Y, Zhao Q Y, Yin X Y, Lu J M, Wang J Q. An unusual hierarchical ZSM-5 microsphere with good catalytic performance in methane dehydroaromatization. Microporous and Mesoporous Materials , 2009, 118(1-3): 169-175
doi: 10.1016/j.micromeso.2008.08.048
105 Martinez A, Peris E, Derewinski M, Burkat-Dulak A. Improvement of catalyst stability during methane dehydroaromatization (MDA) on Mo/HZSM-5 comprising intracrystalline mesopores. Catalysis Today , 2011, 169(1): 75-84
doi: 10.1016/j.cattod.2010.11.063
106 Liu H, Yang S, Hu J, Shang F P, Li Z F, Xu C, Guan J Q, Kan Q B. A comparison study of mesoporous Mo/H-ZSM-5 and catalysts in methane non-oxidative aromatization. Fuel Processing Technology , 2012, 96: 195-202
doi: 10.1016/j.fuproc.2011.12.034
107 Chu N B, Wang J Q, Zhang Y, Yang J H, Lu J M, Yin D H. Nestlike hollow hierarchical MCM-22 microspheres: synthesis and exceptional catalytic properties. Chemistry of Materials , 2010, 22(9): 2757-2763
doi: 10.1021/cm903645p
108 Tang Q, Xu H, Zheng Y Y, Wang J F, Li H S, Zhang J. Zhang Jun. Catalytic dehydration of methanol to dimethyl ether over micro-mesoporous ZSM-5/MCM-41 composite molecular sieves. Applied Catalysis A, General , 2012, 413: 36-42
doi: 10.1016/j.apcata.2011.10.039
109 Cho K, Cho H S, de Menorval L C, Ryoo R. Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chemistry of Materials , 2009, 21(23): 5664-5673
doi: 10.1021/cm902861y
110 Mei C S, Wen P Y, Liu Z C, Liu H X, Wang Y D, Yang W M, Xie Z K, Hua W M, Gao Z. Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5. Journal of Catalysis , 2008, 258(1): 243-249
doi: 10.1016/j.jcat.2008.06.019
111 Zhu J, Cui Y, Wang Y, Wei F. Direct synthesis of hierarchical zeolite from a natural layered material. Chemical Communications , 2009, (22): 3282-3284
doi: 10.1039/b902661d
112 Wang P F, Lv A L, Hu J, Xu J A, Lu G Z. In situ synthesis of SAPO-34 grown onto fully calcined kaolin microspheres and its catalytic properties for the MTO reaction. Industrial & Engineering Chemistry Research , 2011, 50(17): 9989-9997
doi: 10.1021/ie201060u
113 Olsbye U, Svelle S, Bjorgen M, Beato P, Janssens T V W, Joensen F, Bordiga S, Lillerud K P. Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity. Angewandte Chemie International Edition , 2012, 51(24): 5810-5831
doi: 10.1002/anie.201103657
114 Lietz G, Schnabel K H, Peuker C, Gross T, Storek W, Volter J. Modifications of H-ZSM-5 catalysts by NaOH treatment. Journal of Catalysis , 1994, 148(2): 562-568
doi: 10.1006/jcat.1994.1242
115 Bjorgen M, Joensen F, Holm M S, Olsbye U, Lillerud K P, Svelle S. Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Applied Catalysis A, General , 2008, 345(1): 43-50
doi: 10.1016/j.apcata.2008.04.020
116 Kim J, Choi M, Ryoo R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. Journal of Catalysis , 2010, 269(1): 219-228
doi: 10.1016/j.jcat.2009.11.009
117 Ni Y M, Sun A M, Wu X L, Hai G L, Hu J L, Li T, Li G X. Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction. Journal of Natural Gas Chemistry , 2011, 20(3): 237-242
doi: 10.1016/S1003-9953(10)60184-3
118 Rownaghi A A, Hedlund J. Methanol to gasoline-range hydrocarbons: Influence of nanocrystal size and mesoporosity on catalytic performance and product distribution of ZSM-5. Industrial & Engineering Chemistry Research , 2011, 50(21): 11872-11878
doi: 10.1021/ie201549j
119 Vennestrom P N R, Grill M, Kustova M, Egeblad K, Lundegaard L F, Joensen F, Christensen C H, Beato P. Hierarchical ZSM-5 prepared by guanidinium base treatment: Understanding microstructural characteristics and impact on MTG and NH3-SCR catalytic reactions. Catalysis Today , 2011, 168(1): 71-79
doi: 10.1016/j.cattod.2011.03.045
120 Rownaghi A A, Rezaei F, Hedlund J. Rezaei, Hedlund J. Uniform mesoporous ZSM-5 single crystals catalyst with high resistance to coke formation for methanol deoxygenation. Microporous and Mesoporous Materials , 2012, 151: 26-33
doi: 10.1016/j.micromeso.2011.11.020
121 Kima K, Ryoo R, Jang H D, Choi M. Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences. Journal of Catalysis , 2012, 288: 115-123
doi: 10.1016/j.jcat.2012.01.009
[1] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[2] Qingzhuo Ni, Hao Cheng, Jianfeng Ma, Yong Kong, Sridhar Komarneni. Efficient degradation of orange II by ZnMn2O4 in a novel photo-chemical catalysis system[J]. Front. Chem. Sci. Eng., 2020, 14(6): 956-966.
[3] Baoyu Liu, Qiaowen Mu, Jiajin Huang, Wei Tan, Jing Xiao. Fabrication of titanosilicate pillared MFI zeolites with tailored catalytic activity[J]. Front. Chem. Sci. Eng., 2020, 14(5): 772-782.
[4] Cyrine Ayed, Wei Huang, Kai A. I. Zhang. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media[J]. Front. Chem. Sci. Eng., 2020, 14(3): 397-404.
[5] Rongxin Zhang, Peinan Zhong, Hamidreza Arandiyan, Yanan Guan, Jinmin Liu, Na Wang, Yilai Jiao, Xiaolei Fan. Using ultrasound to improve the sequential post-synthesis modification method for making mesoporous Y zeolites[J]. Front. Chem. Sci. Eng., 2020, 14(2): 275-287.
[6] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[7] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[8] Anandarup Goswami, Manoj B. Gawande. Phosphorene: Current status, challenges and opportunities[J]. Front. Chem. Sci. Eng., 2019, 13(2): 296-309.
[9] J. Christopher Whitehead. Plasma-catalysis: Is it just a question of scale?[J]. Front. Chem. Sci. Eng., 2019, 13(2): 264-273.
[10] Andrea P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis[J]. Front. Chem. Sci. Eng., 2018, 12(4): 878-892.
[11] Yan Zhang, Jian Xiao, Qiying Lv, Shuai Wang. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes[J]. Front. Chem. Sci. Eng., 2018, 12(3): 494-508.
[12] Dong Yang, Xiaoyan Zou, Yuanyuan Sun, Zhenwei Tong, Zhongyi Jiang. Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction[J]. Front. Chem. Sci. Eng., 2018, 12(3): 440-449.
[13] Jian Zhang, Liang Wang, Yanyan Ji, Fang Chen, Feng-Shou Xiao. Mesoporous zeolites for biofuel upgrading and glycerol conversion[J]. Front. Chem. Sci. Eng., 2018, 12(1): 132-144.
[14] Dongxu Han, Zhiguo Zhang, Zongbi Bao, Huabin Xing, Qilong Ren. Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions[J]. Front. Chem. Sci. Eng., 2018, 12(1): 24-31.
[15] Jian Zhou, Zhicheng Liu, Yangdong Wang, Dejin Kong, Zaiku Xie. Shape selective catalysis in methylation of toluene: Development, challenges and perspectives[J]. Front. Chem. Sci. Eng., 2018, 12(1): 103-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed