Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (2) : 218-225    https://doi.org/10.1007/s11705-013-1330-9
RESEARCH ARTICLE
Condensation of phenol and acetone on a modified macroreticular ion exchange resin catalyst
Baohe WANG, Lili WANG, Jing ZHU(), Shuang CHEN, Hao SUN
Key Laboratory for Green Chemical Technology of Ministry of Education, Research and Development Center of Petrochemical Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(216 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Macroreticular ion exchange resin catalysts were prepared by suspension polymerization, and then modified by alkylmercaptoamines. The modified catalysts were characterized by N2 adsorption/desorption measurements, scanning electron microscopy and differential scanning calorimetry. Key factors such as the mercaptan content, the degree of crosslinking and the structures of the promoters were investigated for the synthesis of Bisphenol A (BPA). At optimal conditions, the macroreticular ion exchange resin catalysts modified by alkylmercaptoamines showed high catalytic activity and selectivity for BPA synthesis.

Keywords macroreticular ion exchange resin      catalysts      suspension polymerization      Bisphenol A     
Corresponding Author(s): ZHU Jing,Email:cj_zhu1975@tju.edu.cn   
Issue Date: 05 June 2013
 Cite this article:   
Baohe WANG,Lili WANG,Jing ZHU, et al. Condensation of phenol and acetone on a modified macroreticular ion exchange resin catalyst[J]. Front Chem Sci Eng, 2013, 7(2): 218-225.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1330-9
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I2/218
SampleCrosslinking degree/%Exchange capacity /(meq/g)Average pore diameter/?SBET/(m2?g-1)Pore volume/(cm3?g-1)Range of pore diameter/?
R145.637036.70.45100-1000
N-R1R2484.35.136426335.260.40.430.3290-98087-890
N-R2R3N-R3R481010124.05.24.44.725723021617558.482.780.498.80.300.400.370.3684-86070-73064-71058-600
N-R4R512163. 74.31708285.81170.340.4152-57020-200
N-R5163.4781130.3916-180
Tab.1  Physical characteristics of MIER and modified MIER samples in dry state
Fig.1  SEM pictures of the prepared macroporous sulfonated resin. R catalyst (a) and the NTBA modified R catalyst (b)
Fig.2  DSC curves of S-DVB beads of R (a) and the sulfonated S-DVB catalyst R (b)
CatalystPromoterSBPA /%CAcetone /%
R2-80.625.7
NTBA98.196.5
A-16-80.725.5
NTBA98.996.6
CT-124-80.630.8
NTBA92.980.9
Tab.2  Results on various catalysts: unmodified and modified by NTBA
Fig.3  The effect of amount of sulfonic acid groups substituted with NTBA on the catalytic properties. Reaction conditions: Reaction time: 1 h; Temperature: 70C; Phenol: 22.56 g; Acetone: 1.74 g; Catalyst: 3.40 g
Fig.4  Effect of crosslinking degree. Reaction conditions: Reaction time: 1 h; Temperature: 70C; Phenol: 22.56 g; Acetone: 1.74 g; Catalyst: 3.40 g; The amount of sulfonic acid groups substituted with NTBA was 5 to 25 mol-%
NumberModifierSBPA /%CAcetone /%
0-80.625.7
1H2NCH2CH2SH95.753.8
2HN(CH2CH2SH)296.490.7
3(CH3)2NCH2CH2CH2SH97.193.1
4(CH3)3CN(CH2CH2SH)298.196.5
Tab.3  Effect of the immobilized alkylmeracptoamine on R for BPA synthesis
Fig.5  Proposed reaction mechanism for BPA synthesis on catalyst modified by di-mercapto-alkylamine. is the ion exchange resin catalyst modified by di-mercapto compounds; is the S-DVB polymer; is the (R, R=H or an alkyl with 2-6 carbon atoms)
1 Orjuela A, Yanez A J, Santhanakrishnan A, Liraa C T, Miller D J. Kinetics of mixed succinic acid/acetic acid esterification with Amberlyst 70 ion exchange resin as catalyst. Chemical Engineering Journal , 2012, 188: 98–107
doi: 10.1016/j.cej.2012.01.103
2 Dosuna-Rodríguez I, Gaigneaux E M. Glycerol acetylation catalysed by ion exchange resins. Catalysis Today , 2012, 195(1): 14–21
doi: 10.1016/j.cattod.2012.04.031
3 Mahajan Y S, Kamath R S, Kumbhar P S, Mahajani S M. Self-Condensation of Cyclohexanone over Ion Exchange Resin Catalysts: Kinetics and Selectivity Aspects. Industrial & Engineering Chemistry Research , 2008, 47(1): 25–33
doi: 10.1021/ie061275b
4 Choi S B, Won S W, Yun Y S. Use of ion-exchange resins for the adsorption of the cationic part of ionic liquid, 1-ethyl-3-methylimidazolium. Chemical Engineering Journal , 2013, 214: 78–82
doi: 10.1016/j.cej.2012.10.035
5 Kawanishi Y, Suzuki Y, Miyazawa A. Efficient 16O-18O isotope exchange reactions of carbonyl compounds in aqueous organic solvents catalyzed by acidic resin. Chemical Engineering Journal , 2011, 167(2-3): 531–535
doi: 10.1016/j.cej.2010.10.052
6 Singh P. Preparation of bisphenol-A over zeolite catalysts. Catalysis Letters , 1992, 16(4): 431–435
doi: 10.1007/BF00764901
7 Yadav G D, Kirthivasan N. Synthesis of bisphenol-A: comparison of efficacy of ion exchange resin catalysts vis-a-vis heteropolyacid supported on clay and kinetic modelling. Applied Catalysis A, General , 1997, 154(1-2): 29–53
doi: 10.1016/S0926-860X(96)00364-X
8 Krystyna K, Nowi`nska W. Synthesis of Bisphenol-A over heteropoly compounds encapsulated into mesoporous molecular sieves. Applied Catalysis A, General , 2000, 203(1): 91–100
doi: 10.1016/S0926-860X(00)00469-5
9 Jia L J, Hua C Y, Dai L Y, Shan Y K. Synthesis of bisphenol A catalyzed by Et3NHCl- AlCl3 ionic liquids. Reaction Kinetics and Catalysis Letters , 2003, 81(2): 235–240
doi: 10.1023/B:REAC.0000019428.51674.93
10 Das D, Lee J F, Cheng S. Selective synthesis of Bisphenol-A over mesoporous MCM silica catalysts functionalized with sulfonic acid groups. Journal of Catalysis , 2004, 223(1): 152–160
doi: 10.1016/j.jcat.2004.01.025
11 Hou L J, Cai Q H, Lu B, Li X, Xiao X, Han Y, Cui S. A novel solid acid for synthesis of bisphenol A. Catalysis Letters , 2006, 111(3-4): 153–157
doi: 10.1007/s10562-006-0155-2
12 Chen C C, Cheng S, Jang L Y. Dual-functionalized large pore mesoporous silica as an efficient catalyst for bisphenol-A synthesis. Microporous and Mesoporous Materials , 2008, 109(1-3): 258–270
doi: 10.1016/j.micromeso.2007.04.053
13 Shimizu K, Kontani S, Yamada S, Takahashi G, Nishiyama T, Satsuma A. Design of active centers for bisphenol-A synthesis by organic-inorganic dual modification of heteropolyacid. Applied Catalysis A, General , 2010, 380(1-3): 33–39
doi: 10.1016/j.apcata.2010.03.025
14 Dooleya K M, Williamsa J A, Gates B C, Albright R L. Sulfonated poly (styrene- divinylbenzene) catalysts: II. Diffusion and the influence of macroporous polymer physical properties on the rate of reesterification. Journal of Catalysis , 1982, 74(2): 361–372
doi: 10.1016/0021-9517(82)90041-0
15 Ihm S K, Chung M J, Park K Y. Activity difference between the internal and external sulfonic groups of macroreticular ion-exchange resin catalysts in isobutylene hydration. Industrial & Engineering Chemistry Research , 1988, 27(1): 41–45
doi: 10.1021/ie00073a009
16 Patel D, Saha B. Heterogeneous kinetics and residue curve map (RCM) determination for synthesis of n-hexyl acetate using ion-exchange resins as catalysts. Industrial & Engineering Chemistry Research , 2007, 46(10): 3157–3169
doi: 10.1021/ie060725x
17 Kolah A K, Asthana N S, Vu D T, Lira C T, Miller D J. Reaction kinetics for the heterogeneously catalyzed esterification of succinic acid with ethanol. Industrial & Engineering Chemistry Research , 2008, 47(15): 5313–5317
doi: 10.1021/ie0706616
18 Degirmenci L, Oktar N, Dogu G. Product Distributions in Ethyl tert-Butyl Ether Synthesis over Different Solid Acid Catalysts. Industrial & Engineering Chemistry Research , 2009, 48(5): 2566–2576
doi: 10.1021/ie801508r
19 Granollers M, Izquierdo J F, Cunill F. Effect of macroreticular acidic ion-exchange resins on 2-methyl-1-butene and 2-methyl-2-butene mixture oligomerization. Applied Catalysis A, General , 2012, 435-436: 163–171
doi: 10.1016/j.apcata.2012.05.051
20 Widdecke H, Klein J, Haupt U. The influence of matrix structure on the activity and selectivity of polymer supported catalysts. Makromolekulare Chemie. Macromolecular Symposia , 1986, 4(1): 145–155
doi: 10.1002/masy.19860040116
21 Klein J, Widdecke H, Bothe N. Influence of functional group distribution on the thermal stability and catalytic activity of sulfonated styrene-DVB-copolymers. Die Makromolekulare Chemie , 1984, 6(6): 211–226
doi: 10.1002/macp.1984.020061984115
22 Hart M, Fuller G, Brown D, Park C, Keane M, Dale J, Fougret C, Cockman R. Acidities and catalytic activities of persulfonated poly (styrene-co-divinylbenzene) ion-exchange resins. Catalysis Letters , 2001, 72(3-4): 135–139
doi: 10.1023/A:1009032027366
23 Hanková L, Holub L, Je?ábek K. Relation between functionalization degree and activity of strongly acidic polymer supported catalysts. Reactive & Functional Polymers , 2006, 66(6): 592–598
doi: 10.1016/j.reactfunctpolym.2005.10.011
24 Coutinho F M B, Rezende S M, Soares B G. Characterization of sulfonated poly (styrene- divinylbenzene) and poly (divinylbenzene) and its application as catalysts in esterification reaction. Journal of Applied Polymer Science , 2006, 102(4): 3616–3627
doi: 10.1002/app.24046
25 Faler G R, Loucks G R. US Patent, 4294995, 1979-10-13
26 Pressman E J, Willey P R. US Patent, 4584416, 1986-04-22
27 Wagner R B. US Patent, 3172916, 1965-04-09
28 Simon M Li. Process and Catalyst for Production of Bisphenol—A PJ.US4820740,1989-04-11
29 Tan Q, Jin Z Q, Jiang H S, Liu Z Z, He B J. US Patent, 5579942, 1998-06-02
30 Bothe N, Doscher F, Klein J, Widdecke H. Thermal stability of sulphonated styrene-divinylbenzene resins. Polymer , 1979, 20(7): 850–854
doi: 10.1016/0032-3861(79)90122-8
31 Gangadwala J, Mankar S, Mahajani S, Kienle A, Stein E. Esterification of acetic acid with butanol in the presence of ion-exchange resins as catalysts. Industrial & Engineering Chemistry Research , 2003, 42(10): 2146–2155
doi: 10.1021/ie0204989
32 Saha B, Sharma M. Esterification of formic acid, acrylic acid and methacrylic acid with cyclohexene in batch and distillation column reactors: ion-exchange resins as catalysts. Reactive & Functional Polymers , 1996, 28(3): 263–278
doi: 10.1016/1381-5148(95)00092-5
33 Qi X W, Chen H F. Review of ion-exchange resin catalyst for Bisphenol A synthesis. Chinese Petrochemical Industry , 1996, 25(10): 744–747
34 Ghosh P K, Guha T, Saha A N. Kinetic study of formation of Bisphenol A. Journal of Applied Chemistry , 1967, 17(8): 239–240
doi: 10.1002/jctb.5010170805
35 Reinicker R A, Gates B C. Bisphenol A synthesis: kinetics of the phenol-acetone condensation reaction catalyzed by sulfonic acid resin. AIChE Journal. American Institute of Chemical Engineers , 1974, 20(5): 933–940
doi: 10.1002/aic.690200514
36 He M Y, Chen Q, Wang X. Study on stability of catalyst for Bisphenol A synthesis. Chemical Industry and Engineering Progress. , 2005, 24(3): 274–277
37 Dixit A P, Yadav G D. Deactivation of ion-exchange resin catalysts. Part I: Alkylation of o-xylene with styrene. Reactive & Functional Polymers , 1996, 31(3): 237–250
doi: 10.1016/1381-5148(96)00062-4
38 Sugawara T, Watanabe M, Sumitani N, Shirasaki M, Suzuki T. US Patent, 5589517, 1996-12-31
39 Zeidan R K, Dufaud V, Davis M E. Enhanced cooperative, catalytic behavior of organic functional groups by immobilization. Journal of Catalysis , 2006, 239(2): 299–306
doi: 10.1016/j.jcat.2006.02.010
40 Udayakumar S, Ajaikumar S, Pandurangan A. Electrophilic substitution reaction of phenols with aldehydes: Enhance the yield of bisphenols by HPA and supported HPA. Catalysis Communications , 2007, 8(3): 366–374
doi: 10.1016/j.catcom.2006.05.054
[1] Ehsan Rahmani, Mohammad Rahmani. Catalytic process modeling and sensitivity analysis of alkylation of benzene with ethanol over MIL-101(Fe) and MIL-88(Fe)[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1100-1111.
[2] Sen Wang, Shiyun Liu, Danhua Mei, Rusen Zhou, Congcong Jiang, Xianhui Zhang, Zhi Fang, Kostya (Ken) Ostrikov. Liquid discharge plasma for fast biomass liquefaction at mild conditions: The effects of homogeneous catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 763-771.
[3] Xinxiang Cao, Tengteng Lyu, Wentao Xie, Arash Mirjalili, Adelaide Bradicich, Ricky Huitema, Ben W.-L. Jang, Jong K. Keum, Karren More, Changjun Liu, Xiaoliang Yan. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2020, 14(4): 522-533.
[4] Raquel Portela, Susana Perez-Ferreras, Ana Serrano-Lotina, Miguel A. Bañares. Engineering operando methodology: Understanding catalysis in time and space[J]. Front. Chem. Sci. Eng., 2018, 12(3): 509-536.
[5] Songbo He, Jeffrey Boom, Rolf van der Gaast, K. Seshan. Hydro-pyrolysis of lignocellulosic biomass over alumina supported Platinum, Mo2C and WC catalysts[J]. Front. Chem. Sci. Eng., 2018, 12(1): 155-161.
[6] Cunyao Li, Wenlong Wang, Li Yan, Yunjie Ding. A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts[J]. Front. Chem. Sci. Eng., 2018, 12(1): 113-123.
[7] Hajime Nakatani,Katsutoshi Hori. Cell surface protein engineering for high-performance whole-cell catalysts[J]. Front. Chem. Sci. Eng., 2017, 11(1): 46-57.
[8] Yinlong Hu,Shuang Zheng,Fumin Zhang. Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol[J]. Front. Chem. Sci. Eng., 2016, 10(4): 534-541.
[9] Kechao Zhao,Zhenhua Li,Li Bian. CO2 methanation and co-methanation of CO and CO2 over Mn-promoted Ni/Al2O3 catalysts[J]. Front. Chem. Sci. Eng., 2016, 10(2): 273-280.
[10] Shaolong WAN,Yong WANG. A review on ex situ catalytic fast pyrolysis of biomass[J]. Front. Chem. Sci. Eng., 2014, 8(3): 280-294.
[11] Kuiyi YOU, Fangfang ZHAO, Xueyan LONG, Pingle LIU, Qiuhong AI, Hean LUO. One-step synthesis of ?-caprolactam via the liquid phase catalytic nitrosation of cyclohexane in the presence of concentrated sulfuric acid[J]. Front Chem Sci Eng, 2012, 6(4): 389-394.
[12] Xuesong SHANG, Jianrong LI, Xiaowei YU, Jinsheng CHEN, Chi HE. Effective regeneration of thermally deactivated commercial V-W-Ti catalysts[J]. Front Chem Sci Eng, 2012, 6(1): 38-46.
[13] Jinli ZHANG, Nan LIU, Wei LI, Bin DAI. Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts[J]. Front Chem Sci Eng, 2011, 5(4): 514-520.
[14] XU Kaqiu, XU Jiale, WANG Yuhong. Preparation and property of porous hydroxyapatite as an inorganic dispersant used in suspension polymerization[J]. Front. Chem. Sci. Eng., 2008, 2(1): 49-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed