Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (3) : 279-288    https://doi.org/10.1007/s11705-013-1338-1
RESEARCH ARTICLE
Light olefins synthesis from С12 paraffins via oxychlorination processes
Anton SHALYGIN, Evgenii PAUKSHTIS, Evgenii KOVALYOV, Bair BAL’ZHINIMAEV()
Boreskov Institute of Catalysis, Novosibirsk 630090, Russia
 Download: PDF(338 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A two-step process was employed to convert methane or ethane to light olefins via the formation of an intermediate monoalkyl halide. A novel K4RuOCl10/TiO2 catalyst was tested for the oxidative chlorination of methane and ethane. The catalyst had high selectivity for methyl and ethyl chlorides, 80% and 90%, respectively. During the oxychlorination of ethane at T≥250°C, the formation of ethylene as a reaction product along with ethyl chloride was observed. In situ Fourier transform infrared studies showed that the key intermediate for monoalkyl chloride and ethylene formation is the alkoxy group. The reaction mechanism for the oxidative chlorination of methane and ethane over the Ru-oxychloride catalyst was proposed. The novel fiber glass catalyst was also tested for the dehydrochlorination of alkyl chlorides to ethylene and propylene. Very high selectivities (up to 94%–98%) for ethylene and propylene formation as well as high stability were demonstrated.

Keywords oxychlorination      methane      ethane      light olefins      ruthenium catalyst     
Corresponding Author(s): BAL’ZHINIMAEV Bair,Email:balzh@catalysis.ru   
Issue Date: 05 September 2013
 Cite this article:   
Anton SHALYGIN,Evgenii PAUKSHTIS,Evgenii KOVALYOV, et al. Light olefins synthesis from С12 paraffins via oxychlorination processes[J]. Front Chem Sci Eng, 2013, 7(3): 279-288.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1338-1
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I3/279
Fig.1  Schematic of the catalytic setup
Fig.2  Schematic of the IR high temperature cell
Fig.3  Time dependence of the HCl conversion on the RuO/TiO and KRuOCl/TiO catalysts. Feed gas: 20% HCl in oxygen, GHSV= 750 h
Fig.4  Concentration of the reaction products in methane oxychlorination versus temperature over KRuOCl/TiO. Feed gas: 50% CH +20% HCl+10% O + the balance Ar, GHSV= 2500 h
Fig.5  Temperature dependence of the HCl and CH conversions and the CHCl selectivity in the oxidative chlorination of methane on KRuOCl/TiO. Feed gas: 50% CH +20% HCl+10% O + the balance Ar, GHSV= 2500 h
Fig.6  Effect of the feed gas oxygen concentration on the CHCl selectivity during methane conversion. Conversion was varied by increasing the temperature
Fig.7  IR spectra recorded at 300°C after 10 min of (1) methanol adsorption on the same catalyst evacuated at 300°C for 0.5 h, (2) methane interaction with the catalyst pretreated in O + HCl (1 : 1) at 300°C for 0.5 h, (3) interaction of the reaction mixture CH + HCl+ O (2 ∶ 1 ∶ 1) with the catalyst evacuated at 300°C for 0.5 h
Fig.8  Intensity of the 1270 cm peak as a function of the time after CH admission for (1) CH on the catalyst evacuated at 300°C, (2) reaction mixture CH + HCl+ O on the catalyst evacuated at 300°C, (3) CH on the catalyst pretreated in O at 300°C, (4) CH on the catalyst pretreated in HCl+ O at 300°C
Fig.9  Reaction mechanism of the methane oxidative chlorination on KRuOCl/TiO
Fig.10  Ethane and HCl conversions and selectivity for CHCl and CH versus temperature. Feed gas: 36% ethane, 13.5% HCl, 10% O, and the balance Ar, GHSV= 2500 h
Fig.11  IR spectra recorded at 200°C at different times during the ethane oxychlorination reaction of CH + HCl+ O (2 : 1 : 1) over the KRuOCl/TiO catalyst pretreated by evacuation at 300°C for 1 h.
Fig.12  Reaction mechanism of the ethane oxidative chlorination on KRuOCl/TiO
CatalystConversion/%Selectivity /%Stability
C2H4C3H6C4+
ZSM-510051085low
SAPO-3450102070low
WO3/ZrO240701030moderate
0.02%Pt-SO4/Zr-Si109280stable
0.02%Pt-SO4/Zr-Si259460stablea)
Tab.1  The performance of various catalysts in the dehydrochlorination reaction of CHCl and CHCl to light olefins (T= 450°C, feed gas: 20% CHCl+ the balance Ar, GHSV= 1000 h)
1 Wang W, Jiang Y, Hunger M. Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy. Catalysis Today , 2006, 113(1-2): 102–114
doi: 10.1016/j.cattod.2005.11.015
2 .Yang G, Wei Y, Xu S, Chen J, Li J, Liu Z, Yu J R. Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions. J Phys Chem C , 2013, 117(16): 8214–8222
3 Vora B V, Marker T L, Barger P T, Nilsen H R, Kvisle S, Fuglerud T. Economic route for natural gas conversion to ethylene and propylene. Studies in Surface Science and Catalysis , 1997, 107: 87–98
doi: 10.1016/S0167-2991(97)80321-7
4 Wang C, Xu L, Wang Q. Review of directly producing light olefins via CO hydrogenation. Journal of Natural Gas Chemistry , 2003, 12(1): 10–16
5 Abelló D S, Montané D D. Exploring iron-based multifunctional catalysts for Fischer-Tropsch synthesis: A review. ChemSusChem , 2011, pmid:4(11): 1538–1556
doi: 10.1002/cssc.201100189 pmid:4(11):
6 Galvis H M T, Bitter J H, Khare C B, Ruitenbeek M, Dugulan A I, de Jong K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science , 2012, 325(6070): 835–838
doi: 10.1126/science.1215614
7 Chen W, Fan Z, Pan X, Bao X. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. Journal of the American Chemical Society , 2008, 130(29): 9414–9419
doi: 10.1021/ja8008192
8 Olah G A, Gupta B, Farina M, Felberg J D, Ip W M, Husain A, Karpeles R, Lammertsma K, Melhotra A K, Trivedi N J. Selective Monohalogenation of methane over supported acid or platinum metal catalysts and hydrolysis of methyl halides over γ-alumina-supported metal oxide/hydroxide catalysts. A feasible path for the oxidative conversion of methane into methyl alcohol/dimethyl ether. Journal of the American Chemical Society , 1985, 107(24): 7097–7105
doi: 10.1021/ja00310a057
9 Olah G A, Renner R, Schilling P, Mo Y K. Antimony pentafluoride aluminum trichloride, and silver antimony hexafluoride catalyzed chlorination and chlorolysis of alkanes and cycloalkanes . Journal of the American Chemical Society , 1973, 95(23): 7686–7692
10 Jauman D, Su B L. Direct catalytic conversion of chloromethane to higher hydrocarbons over a series of ZSM-5 zeolites exchanged with alkali cations. JounalβofβMolecularβCatalysisA A , 2003, 197(1-2): 263–273
doi: 10.1016/S1381-1169(02)00622-2
11 Wei Y, Zhang D, Liu Z, Su B. Highly efficient catalytic conversion of chloromethane to light olefins over HSAPO-34 as studied by catalytic testing and in situ FTIR. Journal of Catalysis , 2006, 238(1): 46–57
doi: 10.1016/j.jcat.2005.11.021
12 Seki K. Development of RuO2/Rutile TiO2 catalyst for industrial HCl oxidation process. Catalysis Surveys from Asia , 2010, 14(3-4): 168–175
doi: 10.1007/s10563-010-9091-7
13 Taylor C E, Noceti R P, Schehl R R. Direct conversion of methane to liquid hydrocarbons through chlorocarbon intermediates. Studies in Surface Science and Catalysis , 1988, 36: 483–489
doi: 10.1016/S0167-2991(09)60542-5
14 Taylor C E. Conversion of substituted methanes over ZSM-catalyst. Studies in Surface Science and Catalysis , 2000, 130D: 3633–3638
15 Sun Y, Campbell S M, Lunsford J H, Lewis G E, Palke D, Tau L M. The catalytic conversion of methyl chloride to ethylene and propylene over phosphorus-modified Mg-ZSM-5 zeolites. Journal of Catalysis , 1993, 143(1):32–44
16 Zhang D, Wei Y, Xu L, Chang F, Liu Z, Meng S, Su B L, Liu Z. MgAPSO-34 molecular sieves with various Mg stoichiometries: Synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins. Micro Meso Mater, 2008, 116(1-3): 684–692
17 Liu Z, Huang L, Li W S, Yang F, Au C T, Zhou X P. Higher hydrocarbons from methane condensation mediated by HBr. Journal of Molecular Catalysis , 2007, 273(1-2): 14–20
doi: 10.1016/j.molcata.2007.03.045
18 Lin R, Ding Y, Gong L, Dong W, Wang J, Zhang T. Efficient and stable silica-supported iron phosphate catalysts for oxidative bromination of methane. Journal of Catalysis , 2010, 272(1): 65–73
doi: 10.1016/j.jcat.2010.03.011
19 Degirmenci V, Yilmaz A, Uner D. Selective methane bromination over sulfated zirconia in SBA-15 catalysts. Catalysis Today , 2009, 142(1-2): 30–33
doi: 10.1016/j.cattod.2009.01.011
20 Peringer E, Podkolzin S G, Jones M E, Olindo R, Lercher J A. LaCl3-based catalysts for oxidative chlorination of CH4. Topics in Catalysis , 2006, 38(1-3): 211–220
doi: 10.1007/s11244-006-0085-7
21 Podkolzin S G, Stangland E E, Jones M E, Peringer E, Lercher J A. Methyl chloride production from methane over lantanium-based catalysts. Journal of the American Chemical Society , 2007, 129(9): 2569–2576
doi: 10.1021/ja066913w
22 Peringer E, Salzinger M, Hutt M, Lemonidou A A, Lercher J A. Modified lantanum catalysts for oxidative chlorination of methane. Topics in Catalysis , 2009, 52(9): 1220–1231
doi: 10.1007/s11244-009-9265-6
23 He J, Xu T, Wang Z, Zhang Q, Deng W, Wang Y. Tranformation of methane to propylene: A two-step reaction route catalyzed by modified CeO2 nanocrystals and zeolites. Angewandte Chemie International Edition , 2012, 51(10): 2438–2442
doi: 10.1002/anie.201104071
24 Xu T, Zhang Q, Song H, Wang Y. Fluoride-treated H-ZSM-5 as a highly selective and stable catalyst for the production of propylene from methyl halides. Journal of Catalysis , 2012, 295: 232–241
25 Bal’zhinimaev B S, Paukshtis E A, Lapina O B, Suknev A P, Kirillov V L, Mikenin P E, Zagoruiko A N. Glass fiber materials as a new generation of structured catalysts. Studies in Surface Science and Catalysis , 2010, 175: 43–50
doi: 10.1016/S0167-2991(10)75006-0
26 Crihan D, Knapp M, Zweidinger S, Lundgren E, Weststrate C J, Andersen J N, Seitsonen A P, Over H. Stable deacon process for HCl oxidation over RuO2. Angewandte Chemie International Edition , 2008, 120(11): 2161–2164
doi: 10.1002/ange.200705124
27 Hevia M A G, Amrute A P, Schmidt T, Pйrez-Ramнrez J. Transient mechanistic study of the gas-phase HCl oxidation to Cl2 on bulk and supported RuO2 catalysts. Journal of Catalysis , 2010, 276(1): 141–151
doi: 10.1016/j.jcat.2010.09.009
28 Borello E, Zecchina A, Morterra C. Journal of Physical Chemistry , 1967, 71(9): 2938–2945
doi: 10.1021/j100868a026 pmid:Infrared study of methanol adsorption on Aerosil. I. Chemisorption at room temperature
29 Murray D K, Chang J W, Haw J F. Conversion of methyl halides to hydrocarbons on basic zeolites: A discovery by in situ NMR. Journal of the American Chemical Society , 1993, 115(11): 4732–4741
doi: 10.1021/ja00064a037
30 Murray D K, Howard T, Goguen P W, Krawietz T R, Haw J F. Methyl halide reactions on multifunctional metal-exchanged zeolite catalysts. Journal of the American Chemical Society , 1994, 116(14): 6354–6360
doi: 10.1021/ja00093a040
31 Paes L W, Faria R B, Machuca-Herrera J O, Machado S P. The linear μ-oxo-bis[pentachlororuthenate(IV)] anion. Molecular orbital calculaions. Inorganica Chimica Acta , 2001, 321(1-2): 22–26
doi: 10.1016/S0020-1693(01)00503-5
32 Gazsi A, Koysa A, Bansagi T, Solymosi F. Adsorption and decomposition of ethanol on supported Au catalysts. Catalysis Today , 2011, 160(1): 70–78
doi: 10.1016/j.cattod.2010.05.007
33 Hauchecorne B, Tytgat T, Verbruggen S W, Hauchecorne D, Terrens D, Smits M, Vinken K, Lenaerts S. Photocatalytic degradation of ethylene: An FTIR in situ study under atmospheric conditions. App Catal B Environ , 2011, 105(1-2): 111–116
34 Singh M, Zhou N, Paul D K, Klabunde K J. IR spectral evidence of aldol condensation: Acetaldehyde adsorption over TiO2 surface. Journal of Catalysis , 2008, 260(2): 371–379
doi: 10.1016/j.jcat.2008.07.020
35 Opre Z, Ferri D, Krumeich F, Mallat T, Baiker A. Insight into the nature of active redox sites in Ru-containing hydroxyapatite by DRIFT spectroscopy. Journal of Catalysis , 2007, 251(1): 48–58
doi: 10.1016/j.jcat.2007.07.017
36 Wu W C, Chuang C C, Lin J L. Bonding geometry and reactivity of methoxy and ethoxy groups adsorbed on powdered TiO2. Journal of Physical Chemistry B , 2000, 104(36): 8719–8724
doi: 10.1021/jp0017184
37 Bhattacharyya K, Varma S, Tripathi A K, Bharadwaj S R, Tyagi A K. Mechanistic insight by in situ FTIR for the gas phase photo-oxidation of ethylene by V-doped titania and nano titania. Journal of Physical Chemistry B , 2009, 113(17): 5917–5928
doi: 10.1021/jp8103529
38 Bal’zhinimaev B S, Paukshtis E A, Vanag S V, Suknev A P, Zagoruiko A N. Glass Fiber Catalysts: Novel oxidation catalysts and catalytic technologies for environmental protection. Catalysis Today , 2010, 151(1-2): 195–199
doi: 10.1016/j.cattod.2010.01.011
39 Gulyaeva Yu K, Suknev A P, Paukshtis E A, Bal’zhinimaev B S. Gas phase nitridation of silicate fiber glass materials with ammonia. Journal of Non-Crystalline Solids , 2011, 357(18): 3338–3344
doi: 10.1016/j.jnoncrysol.2011.05.032
[1] Weihong Zhang, Dan Wang, Jie-Xin Wang, Yuan Pu, Jian-Feng Chen. High-gravity-assisted emulsification for continuous preparation of waterborne polyurethane nanodispersion with high solids content[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1087-1099.
[2] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[3] Xiuhui Huang, Junfeng Li, Jun Wang, Zeqiu Li, Jiayin Xu. Catalytic combustion of methane over a highly active and stable NiO/CeO2 catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(4): 534-545.
[4] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[5] Jiao Feng, Qiuhao Lu, Weimin Tan, Kequan Chen, Pingkai Ouyang. The influence of the NCO/OH ratio and the 1,6-hexanediol/dimethylol propionic acid molar ratio on the properties of waterborne polyurethane dispersions based on 1,5-pentamethylene diisocyanate[J]. Front. Chem. Sci. Eng., 2019, 13(1): 80-89.
[6] Dongjie Yang, Shengyu Wang, Ruisheng Zhong, Weifeng Liu, Xueqing Qiu. Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings[J]. Front. Chem. Sci. Eng., 2019, 13(1): 59-69.
[7] Elena Graczová, Branislav Šulgan, Samuel Barabas, Pavol Steltenpohl. Methyl acetate–methanol mixture separation by extractive distillation: Economic aspects[J]. Front. Chem. Sci. Eng., 2018, 12(4): 670-682.
[8] Alberto T. Penteado, Mijin Kim, Hamid R. Godini, Erik Esche, Jens-Uwe Repke. Techno-economic evaluation of a biogas-based oxidative coupling of methane process for ethylene production[J]. Front. Chem. Sci. Eng., 2018, 12(4): 598-618.
[9] Juichen YANG,Hong CHEN,Yuan YUAN,Debanjan SARKAR,Jie ZHENG. Synthesis and characterization of biocompatible polyurethanes for controlled release of hydrophobic and hydrophilic drugs[J]. Front. Chem. Sci. Eng., 2014, 8(4): 498-510.
[10] Yan LI,Zhehao WEI,Yong WANG. Ni/MgO catalyst prepared via dielectric-barrier discharge plasma with improved catalytic performance for carbon dioxide reforming of methane[J]. Front. Chem. Sci. Eng., 2014, 8(2): 133-140.
[11] Jing YANG,Juan LV,Bin GAO,Li ZHANG,Dazhi YANG,Changcan SHI,Jintang GUO,Wenzhong LI,Yakai FENG. Modification of polycarbonateurethane surface with poly(ethylene glycol) monoacrylate and phosphorylcholine glyceraldehyde for anti-platelet adhesion[J]. Front. Chem. Sci. Eng., 2014, 8(2): 188-196.
[12] Piyawat PUE-ON, Vissanu MEEYOO, Thirasak RIRKSOMBOOON. Methane partial oxidation over NiO-MgO/Ce0.75Zr0.25O2 catalysts[J]. Front Chem Sci Eng, 2013, 7(3): 289-296.
[13] Zhikai LI, Zhangfeng QIN, Yagang ZHANG, Zhiwei WU, Hui WANG, Shuna LI, Mei DONG, Weibin FAN, Jianguo WANG. A logic-based controller for the mitigation of ventilation air methane in a catalytic flow reversal reactor[J]. Front Chem Sci Eng, 2013, 7(3): 347-356.
[14] Xianyun LIU, Jianzhou LIU, Feifei GENG, Zhanku LI, Ping LI, Wanli GONG. Synthesis and properties of PdO/CeO2-Al2O3 catalysts for methane combustion[J]. Front Chem Sci Eng, 2012, 6(1): 34-37.
[15] Limei ZHONG, Li ZHOU. PSS sorbents for removing trace hydrogen sulfide in methane[J]. Front Chem Sci Eng, 2011, 5(3): 339-342.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed