Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (3) : 366-380    https://doi.org/10.1007/s11705-013-1340-7
REVIEW ARTICLE
CO2 capture by aqueous ammonia process in the clean development mechanism for Nigerian oil industry
A. A. Olajire()
Industrial and Environmental Chemistry Unit, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
 Download: PDF(350 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The clean development mechanism (CDM) of the Kyoto Protocol offers developing countries the opportunity to participate in the effort to reduce global greenhouse gas levels and also benefit from sustainable development opportunities. To date, the majority of CDM investments have gone to emerging markets such as China, India, Brazil, and Mexico, while developing countries such as Nigeria have largely been absent from the program. Chemical sequestration using aqueous ammonia process (AAP) offers a clean low carbon technology for the efficient conversion of captured CO2 into clean CO2 which could be injected into oil field for enhanced oil recovery or as fertilizer source. CDM-CCS (carbon capture and storage) project with AAP has the potential as intervention for leveraging sustainable livelihood development (organic fertilizer for food production) as well as for tackling local (land air and water) and global pollution (reduce methane, SOx and NOx emissions).

Keywords CO2 capture      CDM      AAP      EOR      fertilizer     
Corresponding Author(s): Olajire A. A.,Email:olajireaa@yahoo.com   
Issue Date: 05 September 2013
 Cite this article:   
A. A. Olajire. CO2 capture by aqueous ammonia process in the clean development mechanism for Nigerian oil industry[J]. Front Chem Sci Eng, 2013, 7(3): 366-380.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1340-7
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I3/366
1 Allen F. Niger Delta oil flares, illegal pollution and oppression. In: The CDM in Africa cannot deliver the money. EJOLT Report , 2012, 2: 47–51
2 McCarthy J J, Canziani O F, Leary N A, Dokken D J, White K S, eds. Climate Change 2001: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2001
3 Mathews J. Seven steps to curb global warming. Energy Policy , 2007, 35(8): 4247–4259
doi: 10.1016/j.enpol.2007.02.031
4 Olajire A A. CO2 capture and separation technologies for end-of-pipe applications—A review. Energy , 2010, 35(6): 2610–2628
doi: 10.1016/j.energy.2010.02.030
5 Wolsky A M, Daniels E J, Jody B J. CO2 capture from the flue gas of conventional fossil-fuel-fired power plants. Environment and Progress , 1994, 13: 214–219
6 Kimura N, Omata K, Kiga T, Takano S, Shikisima S. Characteristics of pulverized coal combustion in O2 /CO2 mixtures for CO2 recovery. Energy Conversion and Management , 1995, 36(6-9): 805–808
doi: 10.1016/0196-8904(95)00126-X
7 Nishikawa N, Hiroano A, Ikuta Y, Fukuda Y, Kaneko M, Kinoshita T, Ogushi Y. Photosynthetic efficiency improvement by microalgae cultivation in tubular-type reactor. Energy Conversion and Management , 1995, 36(6-9): 681–684
doi: 10.1016/0196-8904(95)00097-W
8 Chakma A. Separation of CO2 and SO2 from flue gas streams by liquid members. Energy Conversion and Management , 1995, 36(6-9): 405–410
doi: 10.1016/0196-8904(95)00031-8
9 Yang H, Xu Z, Fan M, Gupta R, Slimane R B, Bland A E, Wright I. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences (China) , 2008, 20(1): 14–27
doi: 10.1016/S1001-0742(08)60002-9
10 Stewart C, Hessami M. A study of methods for carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach. Energy Conversion and Management , 2005, 46(3): 403–420
doi: 10.1016/j.enconman.2004.03.009
11 Galadima A, Garba Z N. Carbon capture and storage (CCS) in Nigeria: Fundamental science and potential implementation risks. Science World Journal , 2008, 3(2): 95–99
12 Pellegrini G. Study of systems for the removal of the CO2 from gaseous flows and storage in solid by-products. Dissertation for the Master Degree . Florence: University of Florence, 2004
13 Pellegrini G. An LCA analysis of different solutions of zero CO2 emission plants. Dissertation for the Doctoral Degree . Florence: University of Florence, 2008,
14 Lee J, Li R. Integration of fossil energy systems with CO2 sequestration through NH4HCO3 production. Energy Conversion and Management , 2003, 44(9): 1535–1546
doi: 10.1016/S0196-8904(02)00149-8
15 Resnik K, Yeh J T, Pennline H W. Aqua ammonia process for simultaneous removal of CO2, SO2, and NOx. International Journal of Environmental Technology and Management , 2004, 4(12): 89–104
16 Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chemical Engineering Research & Design , 2011, 89(9): 1609–1624
doi: 10.1016/j.cherd.2010.11.005
17 Feron P H M. Exploring the potential for improvement of the energy performance of coal fired power plants with post-combustion capture of carbon dioxide. International Journal of Greenhouse Gas Control , 2010, 4(2): 152–160
doi: 10.1016/j.ijggc.2009.10.018
18 Feron P H M, Hendriks C A. CO2 capture process principles and costs. Oil and Gas Science and Technology-Rev. IFP , 2005, 60(3): 451–459
19 Davison J. Performance and costs of power plants with capture and storage of CO2. Energy , 2007, 32(7): 1163–1176
doi: 10.1016/j.energy.2006.07.039
20 Erga O, Juliussenb O, Lidal H. CO2 recovery by means of aqueous amines. Energy Conservation and Management , 1995, 36(6-9): 387–392
doi: 10.1016/0196-8904(95)00027-B
21 Mofarahi M, Khojasteh Y, Khaledi H, Farahnak A. Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine. Energy , 2008, 33(8): 1311–1319
doi: 10.1016/j.energy.2008.02.013
22 Liu J, Wang S, Zhao B, Tong H, Chen C. Absorption of CO2 in aqueous ammonia. Energy Procedia , 2009, 1(1): 933–940
doi: 10.1016/j.egypro.2009.01.124
23 Pellegrini G, Strube R, Manfrida G. Comparative study of chemical absorbents in post-combustion CO2 capture. Energy , 2010, 35(2): 851–857
doi: 10.1016/j.energy.2009.08.011
24 Boustead I, Hancock G F. Handbook of industrial energy analysis. New York: John Wiley & Sons, 1979
25 Budzianowski W M. CO2 Reactive absorption from flue gases into aqueous ammonia solutions: The NH3 slippage effect. Environment Protection Engineering , 2011, 37(4): 5–19
27 Yeh J T, Resnik K P, Rygle K, Pennline H W. Semi-batch bsorption and regeneration studies for CO2 capture by aqueous ammonia. Fuel Processing Technology , 2005, 86(14-15): 1533–1546
doi: 10.1016/j.fuproc.2005.01.015
28 Kim Y J, You J K, Hong W H, Yi K B, Ko C H, Kim J N. Characteristics of CO2 absorption into aqueous ammonia. Separation Science and Technology , 2008, 43(4): 766–777
doi: 10.1080/01496390701870606
29 Brúder P, Lauritsen K G, Mejdell T, Svendsen H F. CO2 capture into aqueous solutions of 3- methylaminopropylamine activated dimethyl-monoethanolamine. Chemical Engineering Science , 2012, 75: 28–37
doi: 10.1016/j.ces.2012.03.005
31 White C M, Strazisar B R, Granite E J, Hoffman J S. Separation and capture of CO2 from large stationary sources and sequestration in geological formations-coalbeds and deep saline aquifers. Journal of the Air and water Management Association , 2003, 53: 645–715
32 Uhlig H H, ed. Corrosion handbook. New York: John Wiley & Sons, 1948
33 Goff G S, Rochelle G T. Monoethanolamine degradation: O2 mass transfer effects under CO2 capture conditions. Industrial & Engineering Chemistry Research , 2004, 43(20): 6400–6408
doi: 10.1021/ie0400245
34 Sexton A J, Rochelle G T. Catalysts and inhibitors for MEA oxidation. Energy Procedia , 2009, 1(1): 1179–1185
doi: 10.1016/j.egypro.2009.01.155
35 Lepaumier H, Picq D, Carrette P L. New amines for CO2 capture. II. Oxidative degradation mechanisms. Industrial & Engineering Chemistry Research , 2009, 48(20): 9068–9075
doi: 10.1021/ie9004749
36 Freeman S A, Davis J, Rochelle G T. Degradation of aqueous piperazine in carbon dioxide capture. International Journal of Greenhouse Gas Control , 2010, 4(5): 756–761
doi: 10.1016/j.ijggc.2010.03.009
37 Liu J, Wang S, Svendsen H F, Idrees M U, Kim I, Chen C. Heat of absorption of CO2 in aqueous ammonia, piperazine solutions and their mixtures. International Journal of Greenhouse Gas Control , 2012, 9: 148–159
doi: 10.1016/j.ijggc.2012.03.013
38 Greer T, Bedelbayev A, Igreja J M, Gomes J F, Lie B.A simulation study on the abatement of CO2 emissions by de-absorption with monoethanolamine. Environmental Technology , 2010, 31(1): 107
39 Versteeg G F, Dijck L A J, Swaaij W P M V. On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions. An overview. Chemical Engineering Communications , 1996, 144(1): 113–158
doi: 10.1080/00986449608936450
40 Yeh J T, Resnik K P, Pennline H W. Regenerable aqua ammonia process for CO2 sequestration. Prepr. Pap.-Am. Chem. Soc. Div. Fuel Chem. , 2004, 49(1): 247–248
41 Kohl A L. Nielsen R eds. Gas Purification. 5th ed. Texas: Gulf Publishing Company, 1997
42 Manovic V, Anthony E J. Lime-based sorbents for high-temperature CO2 capture—A review of sorbent modification methods. International Journal of Environmental Research and Public Health , 2010, 7(8): 3129–3140
doi: 10.3390/ijerph7083129
43 Vaidya P D, Kenig E Y. CO2-alkanolamine reaction kinetics: A review of recent studies. Chemical Engineering & Technology , 2007, 30(11): 1467–1474
doi: 10.1002/ceat.200700268
44 Andrew S P S. A rapid method of measuring absorption rates and its application to CO2 absorption into partially carbonated ammonia liquor. Chemical Engineering Science , 1954, 3(6): 279–286
doi: 10.1016/0009-2509(54)80009-1
45 Pinsen B R W, Pearson L, Roughton F J W. The kinetics of combination of carbon dioxide with ammonia. Transactions of the Faraday Society , 1956, 52: 1594–1598
doi: 10.1039/tf9565201594
46 Hsu C H. Study on carbon dioxide removals from flue gas using chemical absorption method. Dissertation for the Doctoral Degree . Taiwan: National Cheng Kung University, 2003 (in Chinese)
47 Diao Y, Wang S, Chen C. Experimental study on the temperature impacts on the CO2 & SO2 removing efficiency by ammonia gas scrubbing. Acta Scientiae Circumstantiae , 2004, 24: 841–845 (in Chinese)
48 Rivera-Tinoco R, Bouallou C. Comparison of absorption rates and absorption capacity of ammonia solvents with MEA and MDEA aqueous blends for CO2 capture. Journal of Cleaner Production , 2010, 18(9): 875–880
doi: 10.1016/j.jclepro.2009.12.006
49 Puxty G, Rowland R, Attalla M. Comparison of the rate of CO2 absorption into aqueous ammonia and moniethanolamine. Chemical Engineering Science , 2010, 65(2): 915–922
doi: 10.1016/j.ces.2009.09.042
50 Astarita G ed. Mass Transfer with Chemical Reaction. Amsterdam and London: Elsevier Publishing Company, 1967
51 Nilsson J. Development of a model for wet scrubbing of carbon dioxide by chilled ammonia. Dissertation for the Master Degree . Sweden: Lund University, 2009
52 Wang X, Conway W, Burns R, McCann N, Maeder M. Comprehensive study of the hydration and dehydration reactions of carbon dioxide in aqueous solution. Journal of Physical Chemistry A , 2010, 114(4): 1734–1740
doi: 10.1021/jp909019u
53 Wang Z H, Li B, Ehn A, Sun Z W, Li Z S, Bood J, Aldén M, Cen K F. Investigation of flue-gas treatment with O3 injection using NO and NO2 planar laser-induced fluorescence. Fuel , 2010, 89(9): 2346–2352
doi: 10.1016/j.fuel.2010.03.013
55 Wang X, Conway W, Fernandes D, Lawrance G, Burns R, Puxty G, Maeder M. Kinetics of the reversible reaction of CO2(aq) with ammonia in aqueous solution. Journal of Physical Chemistry A , 2011, 115(24): 6405–6412
doi: 10.1021/jp108491a
56 Mandal B P, Guhab M, Biswasb A K, Bandyopadhyaya S S. Removal of carbon dioxide by absorption in mixed amines: modelling of absorption in aqueous MDEA-MEA and AMP-MEA solutions. Chemical Engineering Science , 2001, 56(21-22): 6217–6224
doi: 10.1016/S0009-2509(01)00279-2
57 Benamor A, Aroua M K. Modeling of CO2 solubility and carbamate concentration in DEA, MDEA and their mixtures using the Deshmukh. Mather model. Fluid Phase Equilibria , 2005, 231(2): 150–162
doi: 10.1016/j.fluid.2005.02.005
58 Hagewiesche D P, Ashour S S, Al-Ghawas H A, Orville C, Sandall O C. Absorption of carbon dioxide into aqueous blends of monoethanolamine and methyldiethanolamine. Chemical Engineering Science , 1995, 50(7): 1071–1079
doi: 10.1016/0009-2509(94)00489-E
59 Caplow M. Kinetics of carbamate formation and break down. Journal of the American Chemical Society , 1968, 90(24): 6795–6803
doi: 10.1021/ja01026a041
60 Danckwerts P V. The reaction of CO2 with ethanolamine. Chemical Engineering Science , 1979, 34(4): 443–446
doi: 10.1016/0009-2509(79)85087-3
61 Derks P W J, Versteeg G F. Kinetics of absorption of carbon dioxide in aqueous ammonia solutions. Energy Procedia , 2009, 1(1): 1139–1146
doi: 10.1016/j.egypro.2009.01.150
63 Qin F, Wang S, Hartono A, Svendsen H F, Chen C. Kinetics of CO2 absorption in aqueous ammonia solution. International Journal of Greenhouse Gas Control , 2010, 4(5): 729–738
doi: 10.1016/j.ijggc.2010.04.010
64 Crooks J E, Donnellan J P. Kinetics and mechanism of the reaction between carbon dioxide and ammine in aqueous solution. Journal of the Chemical Society, Perkin Transactions , 1989, 2: 331–333
65 da Silva E F, Svendsen H F. Ab initio study of the reaction of carbamate formation from CO2 and alkanolamines. Industrial & Engineering Chemistry Research , 2004, 43(13): 3413–3418
doi: 10.1021/ie030619k
67 Xiao J. L, C W, Li M H. Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine+ 2-amino-2-methyl-1-propanol. Chemical Engineering Science , 2000, 55(1): 161–175
doi: 10.1016/S0009-2509(99)00303-6
68 Donaldson T L, Nguyen Y N. Carbon dioxide reaction kinetics and transport in aqueous amine membranes. Industrial & Engineering Chemistry Fundamentals , 1980, 19(3): 260–266
doi: 10.1021/i160075a005
69 Littel R J, Van Swaaij W P M, Versteeg G F. Kinetics of CO2 with tertiary amines in aqueous solutions. AIChE Journal. American Institute of Chemical Engineers , 1990, 36(11): 1633–1640
doi: 10.1002/aic.690361103
70 Versteeg G F, Van Swaaij W P M. On the kinetics between CO2 and alkanolamines both in aqueous and nonaqueous solutions. II. Tertiary amines. Chemical Engineering Science , 1988, 43(3): 587–591
doi: 10.1016/0009-2509(88)87018-0
71 Littel R J, Versteeg G F, Van Swaaij W P M. Kinetics of CO2 with primary and secondary amines in aqueous solutions. I. Zwitterion deprotonation kinetics for DEA and DIPA in aqueous blends of alkanolamines. Chemical Engineering Science , 1992, 47(8): 2027–2035
doi: 10.1016/0009-2509(92)80319-8
72 Littel R J, Versteeg G F, Van Swaaij W P M. Kinetics of CO2 with primary and secondary amines in aqueous solutions. II. Influence of temperature on zwitterion formation and deprotonation rates. Chemical Engineering Science , 1992, 47(8): 2037–2045
doi: 10.1016/0009-2509(92)80320-C
73 Pinset B R W, Pearson L, Roughton F J W. The kinetics of combination of carbon dioxide with hydroxide ions. Transactions of the Faraday Society , 1956, 79: 1512–1520
doi: 10.1039/tf9565201512
74 Liao C H, Li M H. Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine+ N-methyldiethanolamine. Chemical Engineering Science , 2002, 57(21): 4569–4582
doi: 10.1016/S0009-2509(02)00395-0
75 Blauwhoff P M, Versteeg G F, van Swaaij W M. A study on the reaction between carbon dioxide and alkanolamines in aqueous solutions. Chemical Engineering Science , 1984, 39(2): 207–225
doi: 10.1016/0009-2509(84)80021-4
76 Ramachandran N, Aboudheir A, Idem R, Tontiwachwuthikul P. Kinetics of the absorption of CO2 into mixed aqueous loaded solutions of monoethanolamine and methyldiethanolamine. Industrial & Engineering Chemistry Research , 2006, 45(8): 2608–2616
doi: 10.1021/ie0505716
77 Peters M, Müller T, Leitner W. CO2: from waste to value. Chemical Engineer , 2009, 813: 46–47
78 Mikkelsen M, J?rgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy and Environmental Science , 2010, 3(1): 43–81
doi: 10.1039/b912904a
79 Budzianowski W M. Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors. Energy , 2012, 41(1): 280–297
doi: 10.1016/j.energy.2012.03.008
80 Budzianowski W M. Benefits of biogas upgrading to biomethane by high pressure reactive solvent scrubbing. Biofuels. Bioproducts and Biorefining , 2012, 6(1): 12–20
doi: 10.1002/bbb.334
81 Depledge J. The organization of global negotiations: Constructing the climate change regime. Earthscan, 2005, 214
82 Metz B O, Davidson H C, de Coninck M L, Meyer L A, eds. IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change . Cambridge, UK and New York, USA: Cambridge University Press, 2005, 3
83 Torvanger A, Rypdal K, Kallbekken S. Geological CO2 storage as a climate change mitigation option. Adaptation and Mitigation Strategies for Global Change , 2005, 10(4): 693–715
doi: 10.1007/s11027-005-2080-x
84 Metz B O, Davidson H C, de Coninck M L, Meyer L A, eds. IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change . Cambridge, UK and New York, USA: Cambridge University Press, 2005, 12–14
[1] Jinhua Zhang, Yuanbin She. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1052-1064.
[2] Yujie Ban, Meng Zhao, Weishen Yang. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 188-215.
[3] Jin Zhao, Guice Yao, Dongsheng Wen. Pore-scale simulation of water/oil displacement in a water-wet channel[J]. Front. Chem. Sci. Eng., 2019, 13(4): 803-814.
[4] Giorgia De Guido, Matteo Compagnoni, Laura A. Pellegrini, Ilenia Rossetti. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion[J]. Front. Chem. Sci. Eng., 2018, 12(2): 315-325.
[5] Bo Chen, Yan Dai, Xuehua Ruan, Yuan Xi, Gaohong He. Integration of molecular dynamic simulation and free volume theory for modeling membrane VOC/gas separation[J]. Front. Chem. Sci. Eng., 2018, 12(2): 296-305.
[6] Stefania Moioli, Laura A. Pellegrini, Paolo Vergani, Fabio Brignoli. Study of the robustness of a low-temperature dual-pressure process for removal of CO2 from natural gas[J]. Front. Chem. Sci. Eng., 2018, 12(2): 209-225.
[7] Huimei Yu, Xiaoxing Wang, Zhu Shu, Mamoru Fujii, Chunshan Song. Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures[J]. Front. Chem. Sci. Eng., 2018, 12(1): 83-93.
[8] Xiaoming Ding, Zhiwen Zhai, Luping Lv, Zhaohui Sun, Xinghai Liu. Design, synthesis, biological activity and density function theory study of pyrazole derivatives containing 1,3,4-thiadiazole moiety[J]. Front. Chem. Sci. Eng., 2017, 11(3): 379-386.
[9] Elaheh Mehrvarz, Ali A. Ghoreyshi, Mohsen Jahanshahi. Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2capture enhancement[J]. Front. Chem. Sci. Eng., 2017, 11(2): 252-265.
[10] Ming TAN,Gaohong HE,Yan DAI,Rujie WANG,Wenhua SHI. Calculation on phase diagrams of polyetherimide/ N,N-dimethylacetamide/H2O-BuOH casting system and their relevance to membrane performances[J]. Front. Chem. Sci. Eng., 2014, 8(3): 312-319.
[11] Qiang XIAO, Xiaodan TANG, Yefeng LIU, Yijun ZHONG, Weidong ZHU. Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures[J]. Front Chem Sci Eng, 2013, 7(3): 297-302.
[12] D. N. SAULOV, C. R. CHODANKA, M. J. CLEARY, A. Y. KLIMENKO. Coupling the porous conditional moment closure with the random pore model: applications to gasification and CO2 capture[J]. Front Chem Sci Eng, 2012, 6(1): 84-93.
[13] Xiaomeng WANG, Mingjuan HAN, Hui WAN, Cao YANG, Guofeng GUAN. Study on extraction of thiophene from model gasoline with br?nsted acidic ionic liquids[J]. Front Chem Sci Eng, 2011, 5(1): 107-112.
[14] Abbas TEIMOURI, Nasrin SOLTANI, Alireza Najafi CHERMAHINI. Synthesis of mono and bis-4-methylpiperidiniummethyl-urea as corrosion inhibitors for steel in acidic media[J]. Front Chem Sci Eng, 2011, 5(1): 43-50.
[15] Yuqiang DAI, Dapeng HU, Meixia DING. Study on wave rotor refrigerators[J]. Front Chem Eng Chin, 2009, 3(1): 83-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed