Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (3) : 297-302    https://doi.org/10.1007/s11705-013-1346-1
RESEARCH ARTICLE
Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures
Qiang XIAO, Xiaodan TANG, Yefeng LIU, Yijun ZHONG, Weidong ZHU()
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
 Download: PDF(233 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A comparison study has been conducted on the strategies for synthesizing nanocrystalline Li2ZrO3 and K-doped Li2ZrO3 absorbents for CO2 capture at high temperatures, including solid-state and liquid-phase methods, citrate route, and starch-assisted sol-gel method combined with freeze-drying technique. The absorption properties, including uptake rate and absorption capacity, of synthesized absorbents were investigated by thermogravimetric analysis (TGA) at different CO2 partial pressures. The nanosized Li2ZrO3 crystals synthesized by the citrate route exhibit a faster uptake and a higher, nearly stoichiometric absorption capacity than those synthesized by the solid-state and liquid-phase methods. The doping of K into Li2ZrO3 can significantly improve the uptake rate of CO2, especially at low CO2 partial pressures. For the synthesis of K-doped Li2ZrO3, the citrate route has poor reproducibility and scalability, whereas the starch-assisted sol-gel method combined with freeze-drying technique is reproducible and easily scaled up, and the thus synthesized absorbents possess excellent CO2 capture properties.

Keywords CO2 capture      Li2ZrO3      K-doped Li2ZrO3      citrate      starch      freeze-drying technique     
Corresponding Author(s): ZHU Weidong,Email:weidongzhu@zjnu.cn   
Issue Date: 05 September 2013
 Cite this article:   
Qiang XIAO,Xiaodan TANG,Yefeng LIU, et al. Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures[J]. Front Chem Sci Eng, 2013, 7(3): 297-302.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1346-1
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I3/297
Fig.1  Uptake profiles of CO in the LiZrO absorbents synthesized by the citrate route (a) at 823 K, the liquid-phase method; (b) at 887 K, the solid-state method; (c) at 773 K, at a CO partial pressure of 0.5 bar for all
Fig.2  Block diagrams of the citrate route and the liquid-phase method for the synthesis of LiZrO absorbents
Fig.3  Uptake profiles of CO in K-doped LiZrO (a, c) and LiZrO (b, d) synthesized via the citrate route at 823 K and a CO partial pressure of 0.25 bar for (a) and (b) while 1.0 bar for (c) and (d)
Fig.4  Block diagram of the starch-assisted sol-gel method combined with freeze-drying technique for the preparation of K-doped LiZrO
Fig.5  Uptake profiles of CO in K-doped LiZrO prepared by (a) the starch-assisted sol-gel method combined with freeze-drying technique, (b) the liquid-phase method [], and (c) the solid-state method [] as well as (d) in LiZrO prepared by the citrate route. Absorption conditions: (a) and (d) at 823 K and a CO partial pressure of 0.25 bar, (b) at 848 K and a CO partial pressure of 0.30 bar, and (c) at 823 K and a CO partial pressure of 1.0 bar
Fig.6  XRD patterns of LiZrO prepared by (a) the liquid-phase method and (b) the citrate route as well as (c) of K-doped LiZrO prepared by the citrate route and (d) the starch-assisted sol-gel method combined with freeze-drying technique
1 Moulijn J A, Makkee M, van Diepen A. Chemical Process Technology. New York: Wiley, 2001, 131–142
2 Hufton J R, Mayorga S, Sircar S. Sorption-enhanced reaction process for hydrogen production. AIChE Journal. American Institute of Chemical Engineers , 1999, 45(2): 248-256
doi: 10.1002/aic.690450205
3 Ochoa-Fernandez E, Haugen G, Zhao T, Ronning M, Aartun I, Borresen B, Rytter E, Ronnekleiv M, Chen D. Process design simulation of H2 production by sorption enhanced steam methane reforming: evaluation of potential CO2 acceptors. Green Chemistry , 2007, 9(6): 654-662
doi: 10.1039/b614270b
4 Carvill B T, Hufton J R, Anand M, Sircar S. Sorption-enhanced reaction process. AIChE Journal. American Institute of Chemical Engineers , 1996, 42(10): 2765-2772
doi: 10.1002/aic.690421008
5 Lee K B, Beaver M G, Caram H S, Sircar S. Reversible chemisorbents for carbon dioxide and their potential applications. Industrial & Engineering Chemistry Research , 2008, 47(21): 8048-8062
doi: 10.1021/ie800795y
6 Nakagawa K, Ohashi T. A novel method of CO2 capture from high temperature gases. Journal of the Electrochemical Society , 1998, 145(4): 1344-1346
doi: 10.1149/1.1838462
7 Nakagawa K, Ohashi T. A reversible change between lithium zirconate and zirconia in molten carbonate. Electrochemistry , 1999, 67(6): 618-621
8 Martínez-dlCruz L, Pfeiffer H, 0. Pfeiffer H. Toward understanding the effect of water sorption on lithium zirconate (Li2ZrO3) during its carbonation process at low temperatures. Journal of Physical Chemistry C , 2010, 114(20): 9453-9458
doi: 10.1021/jp1020966
9 Nair B N, Yamaguchi T, Kawamura H, Nakao S I, Nakagawa K. Processing of lithium zirconate for applications in carbon dioxide separation: Structure and properties of the powders. Journal of the American Ceramic Society , 2004, 87(1): 68-74
doi: 10.1111/j.1551-2916.2004.00068.x
10 Ida J, Lin Y S. Mechanism of high-temperature CO2 sorption on lithium zirconate. Environmental Science & Technology , 2003, 37(9): 1999-2004
doi: 10.1021/es0259032
11 Xiong R T, Ida J, Lin Y S. Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate. Chemical Engineering Science , 2003, 58(19): 4377-4385
doi: 10.1016/S0009-2509(03)00319-1
12 Yi K B, Eriksen D O. Low temperature liquid state synthesis of lithium zirconate and its characteristics as a CO2 sorbent. Separation Science and Technology , 2006, 41(2): 283-296
doi: 10.1080/01496390500496884
13 Ochoa-Fernandez E, Ronning M, Grande T, Chen D. Nanocrystalline lithium zirconate with improved kinetics for high-temperature CO2 capture. Chemistry of Materials , 2006, 18(6): 1383-1385
doi: 10.1021/cm052075d
14 Ochoa-Fernandez E, Ronning M, Grande T, Chen D. Synthesis and CO2 capture properties of nanocrystalline lithium zirconate. Chemistry of Materials , 2006, 18(25): 6037-6046
doi: 10.1021/cm061515d
15 Qi X, Lin Y S, Swartz S L. Electric transport and oxygen permeation properties of lanthanum cobaltite membranes synthesized by different methods. Industrial & Engineering Chemistry Research , 2000, 39(3): 646-653
doi: 10.1021/ie990675e
16 Xiao Q, Liu Y F, Zhong Y J, Zhu W D. A citrate sol-gel method to synthesize Li2ZrO3 nanocrystals with improved CO2 capture properties. Journal of Materials Chemistry , 2011, 21(11): 3838-3842
doi: 10.1039/c0jm03243c
17 Xiao Q, Tang X D, Liu Y F, Zhong Y J, Zhu W D. Citrate route to prepare K-doped Li2ZrO3 sorbents with excellent CO2 capture properties. Chemical Engineering Journal , 2011, 174(1): 231-235
doi: 10.1016/j.cej.2011.09.005
18 Xiao Q, Tang X D, Zhong Y J, Zhu W D. A facile starch-assisted sol-gel method to synthesize K-doped Li2ZrO3 sorbents with excellent CO2 capture properties. Journal of the American Ceramic Society , 2012, 95(5): 1544-1548
doi: 10.1111/j.1551-2916.2012.05090.x
19 Ochoa-Fernandez E, Ronning M, Yu X F, Grande T, Chen D. Compositional effects of nanocrystalline lithium zirconate on its CO2 capture properties. Industrial & Engineering Chemistry Research , 2008, 47(2): 434-442
doi: 10.1021/ie0705150
20 Ida J, Xiong R, Lin Y S. Synthesis and CO2 sorption properties of pure and modified lithium zirconate. Separation and Purification Technology , 2004, 36(1): 41-51
doi: 10.1016/S1383-5866(03)00151-5
21 Fauth D J, Frommell E A, Hoffman J S, Reasbeck R P, Pennline H W. Eutectic salt promoted lithium zirconate: Novel high temperature sorbent for CO2 capture. Fuel Processing Technology , 2005, 86(14-15): 1503-1521
doi: 10.1016/j.fuproc.2005.01.012
[1] Yujie Ban, Meng Zhao, Weishen Yang. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 188-215.
[2] Giorgia De Guido, Matteo Compagnoni, Laura A. Pellegrini, Ilenia Rossetti. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion[J]. Front. Chem. Sci. Eng., 2018, 12(2): 315-325.
[3] Stefania Moioli, Laura A. Pellegrini, Paolo Vergani, Fabio Brignoli. Study of the robustness of a low-temperature dual-pressure process for removal of CO2 from natural gas[J]. Front. Chem. Sci. Eng., 2018, 12(2): 209-225.
[4] Huimei Yu, Xiaoxing Wang, Zhu Shu, Mamoru Fujii, Chunshan Song. Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures[J]. Front. Chem. Sci. Eng., 2018, 12(1): 83-93.
[5] Elaheh Mehrvarz, Ali A. Ghoreyshi, Mohsen Jahanshahi. Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2capture enhancement[J]. Front. Chem. Sci. Eng., 2017, 11(2): 252-265.
[6] Yan Zhang,Pingqiang Gao,Lin Zhao,Yizhong Chen. Preparation and swelling properties of a starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite[J]. Front. Chem. Sci. Eng., 2016, 10(1): 147-161.
[7] A. A. Olajire. CO2 capture by aqueous ammonia process in the clean development mechanism for Nigerian oil industry[J]. Front Chem Sci Eng, 2013, 7(3): 366-380.
[8] Junyan GAO, Yanlei WANG, Hongxun HAO. Investigations on dehydration processes of trisodium citrate hydrates[J]. Front Chem Sci Eng, 2012, 6(3): 276-281.
[9] D. N. SAULOV, C. R. CHODANKA, M. J. CLEARY, A. Y. KLIMENKO. Coupling the porous conditional moment closure with the random pore model: applications to gasification and CO2 capture[J]. Front Chem Sci Eng, 2012, 6(1): 84-93.
[10] Huijuan CHU, Hongliang WEI, Jing ZHU, Shouyin HU. Preparation of starch esters with crosslinking structures derived from dianhydride[J]. Front Chem Sci Eng, 2011, 5(1): 51-54.
[11] K. Manikandan, T. Viruthagiri. Simultaneous saccharification and fermentation of wheat bran flour into ethanol using coculture of amylotic Aspergillus niger and thermotolerant Kluyveromyces marxianus[J]. Front Chem Eng Chin, 2009, 3(3): 240-249.
[12] M. RAJASIMMAN, C. KARTHIKEYAN. Performance of inverse fluidized bed bioreactor in treating starch wastewater[J]. Front Chem Eng Chin, 2009, 3(3): 235-239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed