Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (4) : 388-400    https://doi.org/10.1007/s11705-013-1355-0
RESEARCH ARTICLE
Nano-hydroxyapatite formation via co-precipitation with chitosan-g-poly(N-isopropylacrylamide) in coil and globule states for tissue engineering application
Yang YU1, Hong ZHANG2(), Hong SUN3, Dandan XING1, Fanglian YAO1()
1. School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China; 2. Consolidated Research Institute for Advanced Science and Medical Care, Waseda University (ASMeW), Shinjuku-ku, Tokyo 162-0041, Japan; 3. Basic Medical College, Hebei United University, Tangshan 063000, China
 Download: PDF(1062 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the excellent biocompatibility and osteoconductivity, nano-hydroxyapatite (nHA) has shown significant prospect in the biomedical applications. Controlling the size, crystallinity and surface properties of nHA crystals is a critical challenge in the design of HA based biomaterials. With the graft copolymer of chitosan and poly(N-isopropylacrylamide) in coil and globule states as a template respectively, a novel composite from chitosan-g-poly(N-isopropylacrylamide) and nano-hydroxyapatite (CS-g-PNIPAM/nHA) was prepared via co-precipitation. Zeta potential analysis, thermogravimetric analysis and X-ray diffraction were used to identify the formation mechanism of the CS-g-PNIPAM/nHA composite and its morphology was observed by transmission electron microscopy. The results suggested that the physical aggregation states of the template polymer could induce or control the size, crystallinity and morphology of HA crystals in the CS-g-PNIPAM/nHA composite. The CS-g-PNIPAM/nHA composite was then introduced to chitosan-gelatin (CS-Gel) polyelectronic complex and the cytocompatibility of the resulting CS-Gel/composite hybrid film was evaluated. This hybrid film was proved to be favorable for the proliferation of MC 3T3-E1 cells. Therefore, the CS-g-PNIPAM/nHA composite is a potential biomaterial in bone tissue engineering.

Keywords chitosan      poly(N-isopropylacrylamide)      hydroxyapatite      coil      globule      bone tissue engineering     
Corresponding Author(s): ZHANG Hong,Email:yaofanglian@tju.edu.cn; YAO Fanglian,Email:hzhang@aoni.waseda.jp   
Issue Date: 05 December 2013
 Cite this article:   
Yang YU,Hong ZHANG,Hong SUN, et al. Nano-hydroxyapatite formation via co-precipitation with chitosan-g-poly(N-isopropylacrylamide) in coil and globule states for tissue engineering application[J]. Front Chem Sci Eng, 2013, 7(4): 388-400.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1355-0
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I4/388
Samples b)T/°CFeeding ratio c)Yield/%
Composite-1-25251 : 133.5
Composite-5-25251 : 567.3
Composite-10-25251 : 10~100
Composite-1-40401 : 151.7
Composite-5-40401 : 594.5
Composite-10-40401 : 10~100
nHA400 : 126.7
Tab.1  CS-g-PNIPAM/nHA composites and their preparation conditions
Fig.1  H NMR spectra of (A) MBSA-CS complex, (B) MBSA-CS-RAFT, (C) MBSA-CS-g-PNIPAM copolymer, and (D) CS-g-PNIPAM in CS-g-PNIPAM/nHA composite in DMSO- at 400 MHz
Fig.2  FT-IR spectra of (A) MBSA-CS complex, (B) MBSA-CS-RAFT, (C) MBSA-CS-g-PNIPAM copolymer, and (D) CS-g-PNIPAM/nHA composite
Fig.3  Proposed mechanism for nHA crystalline formation in situ with CS-g-PNIPAM in coil and globule states as a template
Fig.4  TG curves for (A) composite-1-25 and (B) composite-1-40
Fig.5  Zeta potential for CS-g-PNIPAM/nHA composites and pure nHA
Fig.6  XRD patterns of (A) composite-5-25, (B) composite-10-25, (C) composite-5-40, (D) composite-10-40, and (E) nHA
Fig.7  The effects of reaction temperature and feeding ratio of nHA precursors on the crystal structure of nHA in CS-g-PNIPAM/nHA composites: (a) the average crystallite size, (b) the crystallinity, and (c) the draw ratio
Fig.8  TEM images of (a) composite-1-25, (b) composite-1-40, and (c) nHA
Fig.9  SEM images of cross-sections of (a) CS-Gel/composite-5-25 hybrid film, (b) CS-Gel/composite-5-40 hybrid film, (c) CS-Gel/nHA hybrid film, and (d) CS-Gel film
Fig.10  Proliferation levels of MC 3T3-E1 over a 14-day period. Cells were seeded initially at a density of 2.0 × 10 cells/mL and were observed on CS-Gel/composite films and CS-Gel/nHA films with respect to CS-Gel films (***<0.001)
Fig.11  SEM images of MC 3T3-E1 cultured for 14 days on (a) CS-Gel, (b) CS-Gel/nHA, (c) CS-Gel/composite-5-25, and (d) CS-Gel/composite-5-40 films
1 Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomaterialia , 2011, 7(7): 2769–2781
doi: 10.1016/j.actbio.2011.03.019
2 Thanigaiarul K, Elayaraja K, Magudapathy P, Kamachi Mudali U, Nair K G M, Sudarshan M, Krishna J B M, Chakraborty A, Narayana Kalkura S. Surface modification of nanocrystalline calcium phosphate bioceramic by low energy nitrogen ion implantation. Ceramics International , 2013, 39(3): 3027–3034
doi: 10.1016/j.ceramint.2012.09.081
3 Pang Y X, Bao X. Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. Journal of the European Ceramic Society , 2003, 23(10): 1697–1704
doi: 10.1016/S0955-2219(02)00413-2
4 Shen X Y, Chen L, Cai X A, Tong T, Tong H, Hu J M. A novel method for the fabrication of homogeneous hydroxyapatite/collagen nanocomposite and nanocomposite scaffold with hierarchical porosity. Journal of Materials Science. Materials in Medicine , 2011, 22(2): 299–305
doi: 10.1007/s10856-010-4199-x
5 Jin H H, Kim D H, Kim T W, Shin K K, Jung J S, Park H C, Yoon S Y. In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules , 2012, 51(5): 1079–1085
doi: 10.1016/j.ijbiomac.2012.08.027
6 Li J J, Zhu D W, Yin J W, Liu Y X, Yao F L, Yao K D. Formation of nano-hydroxyapatite crystal in situ in chitosan-pectin polyelectrolyte complex network. Materials Science &amp; Engineering C-Materials for Biological Applications , 2010, 30(6): 795–803
doi: 10.1016/j.msec.2010.03.011
7 Dai Y F, Xu M, Wei J C, Zhang H B, Chen Y W. Surface modification of hydroxyapatite nanoparticles by poly(L-phenylalanine) via ROP of L-phenylalanine N-carboxyanhydride (Pha-NCA). Applied Surface Science , 2012, 258(7): 2850–2855
doi: 10.1016/j.apsusc.2011.10.147
8 Poursamar S A, Azami M, Mozafari M. Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique. Colloids and Surfaces. B, Biointerfaces , 2011, 84(2): 310–316
doi: 10.1016/j.colsurfb.2011.01.015
9 Kailasanathan C, Selvakumar N. Comparative study of hydroxyapatite/gelatin composites reinforced with bio-inert ceramic particles. Ceramics International , 2012, 38(5): 3569–3582
doi: 10.1016/j.ceramint.2011.12.073
10 Chang M C, Ko C C, Douglas W H. Conformational change of hydroxyapatite/gelatin nanocomposite by glutaraldehyde. Biomaterials , 2003, 24(18): 3087–3094
doi: 10.1016/S0142-9612(03)00150-9
11 Chang M C, Ko C C, Douglas W H. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials , 2003, 24(17): 2853–2862
doi: 10.1016/S0142-9612(03)00115-7
12 Liou S C, Chen S Y, Liu D M. Synthesis and characterization of needlelike apatitic nanocomposite with controlled aspect ratios. Biomaterials , 2003, 24(22): 3981–3988
doi: 10.1016/S0142-9612(03)00303-X
13 Spanos N, Deimede V, Koutsoukos P G. Functionalization of synthetic polymers for potential use as biomaterials: selective growth of hydroxyapatite on sulphonated polysulphone. Biomaterials , 2002, 23(3): 947–953
doi: 10.1016/S0142-9612(01)00207-1
14 Tien W B, Chen M T, Yao P C. Effects of pH and temperature on microstructure and morphology of hydroxyapatite/collagen composites synthesized in vitro. Materials Science &amp; Engineering C-Materials for Biological Applications , 2012, 32(7): 2096–2102
doi: 10.1016/j.msec.2012.05.046
15 Sena L A, Caraballo M M, Rossi A M, Soares G A. Synthesis and characterization of biocomposites with different hydroxyapatite-collagen ratios. Journal of Materials Science. Materials in Medicine , 2009, 20(12): 2395–2400
doi: 10.1007/s10856-009-3813-2
16 Victor S P, Sharma C P. Development and evaluation of cyclodextrin complexed hydroxyapatite nanoparticles for preferential albumin adsorption. Colloids and Surfaces. B, Biointerfaces , 2011, 85(2): 221–228
doi: 10.1016/j.colsurfb.2011.02.032
17 Xiao X F, Liu R F, Qiu C F, Zhu D C, Liu F. Biomimetic synthesis of micrometer spherical hydroxyapatite with beta-cyclodextrin as template. Materials Science &amp; Engineering C–Biomimetic and Supramolecular Systems , 2009, 29(3): 785–790
doi: 10.1016/j.msec.2008.07.015
18 Chen J D, Nan K H, Yin S H, Wang Y J, Wu T, Zhang Q Q. Characterization and biocompatibility of nanohybrid scaffold prepared via in situ crystallization of hydroxyapatite in chitosan matrix. Colloids and Surfaces. B, Biointerfaces , 2010, 81(2): 640–647
doi: 10.1016/j.colsurfb.2010.08.017
19 Rusu V M, Ng C H, Wilke M, Tiersch B, Fratzl P, Peter M G. Size-controlled hydroxyapatite nanoparticles as self-organized organic-in organic composite materials. Biomaterials , 2005, 26(26): 5414–5426
doi: 10.1016/j.biomaterials.2005.01.051
20 Wilson O C Jr, Hull J R. Surface modification of nanophase hydroxyapatite with chitosan. Materials Science &amp; Engineering C-Biomimetic and Supramolecular Systems , 2008, 28(3): 434–437
doi: 10.1016/j.msec.2007.04.005
21 Kim B-S. Yong S C, Sin Y-W, Ryu K-H, Lee J, You H-K. Growth and osteogenic differentiation of alveolar human bone marrow-derived mesenchymal stem cells on chitosan/hydroxyapatite composite fabric. Journal of Biomedical Materials Research. Part A , 2013, 101A(6): 1550–1558
doi: 10.1002/jbm.a.34456
22 Davidenko N, Carrodeguas R G, Peniche C, Solis Y, Cameron R E. Chitosan/apatite composite beads prepared by in situ generation of apatite or Si-apatite nanocrystals. Acta Biomaterialia , 2010, 6(2): 466–476
doi: 10.1016/j.actbio.2009.07.029
23 He D, Xiao X F, Liu F, Liu R F. Chondroitin sulfate template-mediated biomimetic synthesis of nano-flake hydroxyapatite. Applied Surface Science , 2008, 255(2): 361–364
doi: 10.1016/j.apsusc.2008.06.151
24 Lai J T, Filla D, Shea R. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules , 2002, 35(18): 6754–6756
doi: 10.1021/ma020362m
25 Jiang J, Pan X D, Cao J X, Jiang J L, Hua D B, Zhu X L. Synthesis and property of chitosan graft copolymer by RAFT polymerization with tosylic acid-chitosan complex. International Journal of Biological Macromolecules , 2012, 50(3): 586–590
doi: 10.1016/j.ijbiomac.2012.01.033
26 Li J J, Chen Y P, Yin Y J, Yao F L, Yao K D. Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials , 2007, 28(5): 781–790
doi: 10.1016/j.biomaterials.2006.09.042
27 Ho K M, Li W Y, Wong C H, Li P. Amphiphilic polymeric particles with core-shell nanostructures: emulsion-based syntheses and potential applications. Colloid &amp; Polymer Science , 2010, 288(16–17): 1503–1523
doi: 10.1007/s00396-010-2276-9
28 Thompson C J, Ding C, Qu X, Yang Z, Uchegbu I F, Tetley L, Cheng W P. Uchegbu ljeoma F, Tetley L, Cheng W P. The effect of polymer architecture on the nano self-assemblies based on novel comb-shaped amphiphilic poly(allylamine). Colloid &amp; Polymer Science , 2008, 286(13): 1511–1526
doi: 10.1007/s00396-008-1925-8
29 Chen C, Liu M, Gao C, Lü S, Chen J, Yu X, Ding E, Yu C, Guo J, Cui G. A convenient way to synthesize comb-shaped chitosan-graft-poly (N-isopropylacrylamide) copolymer. Carbohydrate Polymers , 2013, 92(1): 621–628
doi: 10.1016/j.carbpol.2012.09.014
30 Yang L R, Guo C, Jia L W, Xie K, Shou Q H, Liu H Z. Fabrication of Biocompatible Temperature- and pH-Responsive Magnetic Nanoparticles and Their Reversible Agglomeration in Aqueous Milieu. Industrial &amp; Engineering Chemistry Research , 2010, 49(18): 8518–8525
doi: 10.1021/ie100587e
31 Landi E, Tampieri A, Celotti G, Sprio S. Densification behaviour and mechanisms of synthetic hydroxyapatites. Journal of the European Ceramic Society , 2000, 20(14–15): 2377–2387
doi: 10.1016/S0955-2219(00)00154-0
32 Hartgerink J D, Beniash E, Stupp S I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science , 2001, 294(5547): 1684–1688
doi: 10.1126/science.1063187
33 Li D, Newton S M C, Klebba P E, Mao C B. Flagellar Display of Bone-Protein-Derived Peptides for Studying Peptide-Mediated Biomineralization. Langmuir , 2012, 28(47): 16338–16346
doi: 10.1021/la303237u
34 Kandori K, Oda S, Fukusumi M, Morisada Y. Synthesis of positively charged calcium hydroxyapatite nano-crystals and their adsorption behavior of proteins. Colloids and Surfaces. B, Biointerfaces , 2009, 73(1): 140–145
doi: 10.1016/j.colsurfb.2009.05.011
35 Li J, Dou Y, Yang J, Yin Y, Zhang H, Yao F, Wang H, Yao K. Surface characterization and biocompatibility of micro- and nano-hydroxyapatite / chitosan-gelatin network films. Materials Science &amp; Engineering C-Biomimetic and Supramolecular Systems , 2009, 29(4): 1207–1215
doi: 10.1016/j.msec.2008.09.038
36 Liu H F, Yin Y J, Yao K D. Construction of chitosan-gelatin-hyaluronic acid artificial skin in vitro. Journal of Biomaterials Applications , 2007, 21(4): 413–430
37 Lieb E, Tessmar J, Hacker M, Fischbach C, Rose D, Blunk T, Mikos A G, G?pferich A, Schulz M B. Poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers control adhesion and osteoblastic differentiation of marrow stromal cells. Tissue Engineering , 2003, 9(1): 71–84
doi: 10.1089/107632703762687555
38 Li J J, Sun H, Sun D, Yao Y L, Yao F L, Yao K D. Biomimetic multicomponent polysaccharide/nano-hydroxyapatite omposites for bone tissue engineering. Carbohydrate Polymers , 2011, 85(4): 885–894
[1] Xuewen Hu, Yun Wang, Jinbo Ou Yang, Yang Li, Peng Wu, Hengju Zhang, Dingzhong Yuan, Yan Liu, Zhenyu Wu, Zhirong Liu. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1029-1038.
[2] Peizhen Duan, Juan Shen, Guohong Zou, Xu Xia, Bo Jin. Biomimetic mineralization and cytocompatibility of nanorod hydroxyapatite/graphene oxide composites[J]. Front. Chem. Sci. Eng., 2018, 12(4): 798-805.
[3] Ehsan Salehi, Fereshteh Soroush, Maryam Momeni, Aboulfazl Barati, Ali Khakpour. Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption performance[J]. Front. Chem. Sci. Eng., 2017, 11(4): 575-585.
[4] Yong Zhu, Zhishan Bai, Bingjie Wang, Linlin Zhai, Wenqiang Luo. Microfluidic synthesis of renewable biosorbent with highly comprehensive adsorption performance for copper (II)[J]. Front. Chem. Sci. Eng., 2017, 11(2): 238-251.
[5] A. F. D’ Intino,B. de Caprariis,M.L. Santarelli,N. Verdone,A. Chianese. Best operating conditions to produce hydroxyapatite nanoparticles by means of a spinning disc reactor[J]. Front. Chem. Sci. Eng., 2014, 8(2): 156-160.
[6] W. Widiyastuti, Adhi Setiawan, Sugeng Winardi, Tantular Nurtono, Heru Setyawan. Particle formation of hydroxyapatite precursor containing two components in a spray pyrolysis process[J]. Front Chem Sci Eng, 2014, 8(1): 104-113.
[7] Xiaojing ZHANG, Weixin ZHANG, Zeheng YANG, Zhao ZHANG. Nanostructured hollow spheres of hydroxyapatite: preparation and potential application in drug delivery[J]. Front Chem Sci Eng, 2012, 6(3): 246-252.
[8] Xiaoshuai LIU, Zihong CHENG, Wei MA. Removal of copper by modified chitosan adsorptive membrane[J]. Front Chem Eng Chin, 2009, 3(1): 102-106.
[9] XU Kaqiu, XU Jiale, WANG Yuhong. Preparation and property of porous hydroxyapatite as an inorganic dispersant used in suspension polymerization[J]. Front. Chem. Sci. Eng., 2008, 2(1): 49-54.
[10] XUE Ping, WU Tao. Asymmetric transfer hydrogenation of prochiral ketone catalyzed over Fe-CS/SBA-15 catalyst[J]. Front. Chem. Sci. Eng., 2007, 1(3): 251-255.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed