Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (4) : 381-387    https://doi.org/10.1007/s11705-013-1359-9
RESEARCH ARTICLE
Synthesis and fluorescence behavior of 2,5-diphenyl-1,3,4-oxadiazole-containing bismaleimides and bissuccinimides
Xin ZHANG1(), Zichen LI2
1. University of Wuerzburg, Institute of Organic Chemistry, Am Hubland, 97074 Wuerzburg, Germany; 2. Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
 Download: PDF(251 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Bismaleimides bearing 2,5-diphenyl-1,3,4-oxadiazole chromophores at para, meta, ortho position and corresponding saturated bissuccinimides were synthesized. Several synthetic strategies for these bismaleimides were discussed in detail. Almost no or very weak fluorescence was observed for these bismaleimides, however, the bissuccinimides show a strong fluorescence. The effect of molecular geometry on optical behavior and fluorescence quenching mechanism were investigated by UV-vis absorption and fluorescence emission spectroscopy. The electron coupling of ground state of p-bismaleimide is stronger than those of m- and o-bismaleimides. p-Bissuccinimide displays increasing fluorescence quantum yields with red shifts of 22–24 nm, compared to m-bissuccinimide. Polymerizable C=C bonds play a key role in the intramolecular fluorescence quenching.

Keywords fluorescence      bismaleimide      oxadiazole      succinimide     
Corresponding Author(s): ZHANG Xin,Email:xin.zhang@uni-wuerzburg.de   
Issue Date: 05 December 2013
 Cite this article:   
Xin ZHANG,Zichen LI. Synthesis and fluorescence behavior of 2,5-diphenyl-1,3,4-oxadiazole-containing bismaleimides and bissuccinimides[J]. Front Chem Sci Eng, 2013, 7(4): 381-387.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1359-9
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I4/381
Fig.1  Bismaleimides bearing 2,5-diphenyl-1,3,4-oxadiazole chromophores at , , position
Fig.2  Saturated bissuccinimides bearing 2,5-diphenyl-1, 3, 4-oxadiazole chromophores at and position
Fig.3  Synthetic strategies for maleimides bearing chromophores
Fig.4  Representative synthetic route toward Reagents and conditions: (i) polyphosphoric acid /NHNHHO, 130°C, 6 h; (ii) Fe, HCl, 50% CHOH, reflux; (iii) acetone, maleic anhydride, 50°C; (iv) acetic anhydride, AcONa, 80°C, 10 h
Fig.5  UV-vis absorption and fluorescence spectra of , , bismaleimides and saturated , bissuccinimides in 1,2-dichloroethane. Concentration: 3.0 × 10 mol?L
λab,max /nm? /×104 (M-1·cm-1)λem, max /nmΦfτ /nsλR2
12993.803560.082**
22833.793380.032*a)
42973.893520.991.040.95
52833.813360.610.970.86
Tab.1  UV-vis absorption maxima (), extinction coefficient (), fluorescence emission maxima (), fluorescence quantum yields () and lifetimes () as well as the goodness-of-fit parameters () in 1,2-dichloroethane
Solvent?fConcentration/ (mol?L-1)λab/nmνab /104 cm-1λem /nmνem /104 cm-1?λ (λem - λab) /nmνab - νem/104 cm-1
THF0.01423.0 x10-52983.353532.8453.60.515
DCM0.21843.0 x10-52963.373522.8455.10.529
DCE0.22133.0 x10-52953.383522.8456.30.541
AN0.30543.0 x10-52933.413512.8557.70.560
DMF0.27513.0 x10-52973.373552.8258.00.550
MeOH0.33903.0 x10-53023.313752.6772.50.639
Tab.2  Absorption and emission data and Stokes’ shifts (? = - ) of saturated model compound bissuccinimide in 1,2-dichloroethane (DCE), dichloromethane (DCM), , -dimethyforamine (DMF), acetonitrile (AN), methanol (MeOH), solvent parameter f= [( - 1)/(2 + 1)]/[( - 1)/(2 + 1)]
Fig.6  Fluorescence decay of saturated bissuccinimide in 1,2-dichloroethane, = 285 nm, λ = 335 nm, and the residues between the fit and experimental data. Concentration: 5.0 × 10 mol?L. Time interval between adjacent data points was 48 ps
1 Gandini A. The furan/maleimide Diels-Alder reaction: A versatile click–unclick tool in macro molecular synthesis. Progress in Polymer Science , 2013, 38(1): 1–29
doi: 10.1016/j.progpolymsci.2012.04.002
2 Warman J M, Abellon R D, Verhey H J, Verboeven J W, Hofstraat J W. Maleimido-fluoroprobe: A dual-purpose fluorogenic probe of polymerization dynamics. Journal of Physical Chemistry B , 1997, 101(25): 4913–4916
doi: 10.1021/jp970642h
3 Zhang X, Li Z C, Li K B, Lin S, Du F S, Li F M. Donor/acceptor vinyl monomers and their polymers: synthesis, photochemical and photophysical behavior. Progress in Polymer Science , 2006, 31(10): 893–948
doi: 10.1016/j.progpolymsci.2006.08.009
4 Broyer R M, Grover G N, Maynard H D. Emerging synthetic approaches for protein-polymer conjugations. Chemical Communications , 2011, 47(8): 2212–2226
doi: 10.1039/c0cc04062b
5 Wang B B, Zhang X, Jia X R, Li Z C, Ji Y, Yang L, Wei Y. Fluorescence and aggregation behavior of poly(amidoamine) dendrimers peripherally modified with aromatic chromophores: The effect of dendritic architectures. Journal of the American Chemical Society , 2004, 126(46): 15180–15194
doi: 10.1021/ja048219r
6 Sahoo M K, Mhaske S B, Argade N P. Facile routes to alkoxymaleimides/maleic anhydrides. Synthesis , 2003, 7(4): 346–349
7 Corrie J E T, Munasinghe V R N, Rettig W. Synthesis and fluorescence properties of substituted 7-aminocoumarin-3-carboxylate derivatives. Journal of Heterocyclic Chemistry , 2000, 37(6): 1447–1455
doi: 10.1002/jhet.5570370608
8 Wu H P, Aumann R, Frohlich R, Wibbeling B, Kataeva O. Highly selective formation of [4+2] and [4+3] cycloadducts of tetrahydroindenes generated in situ from a (1-alkynyl)carbene tungsten complex by the metalla-1,3,5-hexatriene route. Chemistry (Weinheim an der Bergstrasse, Germany) , 2001, 7(23): 5084–5093
doi: 10.1002/1521-3765(20011203)7:23<5084::AID-CHEM5084>3.0.CO;2-H
9 Gousse C, Gandini A. Diels–Alder polymerization of difurans with bismaleimides. Polymer International , 1999, 48(8): 723–731
doi: 10.1002/(SICI)1097-0126(199908)48:8<723::AID-PI200>3.0.CO;2-#
10 Nicolaou K C, Zhong Y L, Baran P S, Jung J, Choi H S, Yoon W H. Completion and synthesis of advanced analogs. Journal of the American Chemical Society , 2002, 124(10): 2202–2211
doi: 10.1021/ja0120126
11 Zhang X, Li Z C, Li K B, Du F S, Li F M. Multi-maleimides bearing electron-donating chromophores: Reversible fluorescence and aggregation behavior. Journal of the American Chemical Society , 2004, 126(39): 12200–12201
doi: 10.1021/ja0487527
12 Du F S, Li Z C, Li F M. Vinyl monomers bearing chromophore moieties and their polymers. VIII. Synthesis and fluorescence behavior of a vinyloxy monomer having an electron-accepting chromophore moiety, p-((vinyloxy)methyl)benzonitrile, and its polymers. Journal of Polymer Science. Part A, Polymer Chemistry , 1999, 37(2): 179–187
doi: 10.1002/(SICI)1099-0518(19990115)37:2<179::AID-POLA8>3.0.CO;2-4
13 Tanaka F, Thayumanavan R, Barbas C F. Fluorescent detection of carbon–carbon bond formation. Journal of the American Chemical Society , 2003, 125(28): 8523–8528
doi: 10.1021/ja034069t
14 Girouard S, Houle M H, Grandbois A, Keillor J W, Michnick S W. Synthesis and characterization of dimaleimide fluorogens designed for specific labeling of proteins. Journal of the American Chemical Society , 2005, 127(2): 559–566
doi: 10.1021/ja045742x
15 Miller C W, Jonsson E S, Hoyle C E, Viswanathan K, Valente E J. Evaluation of N-aromatic maleimides as free radical photoinitiators: A photophysical and photopolymerization characterization. Journal of Physical Chemistry B , 2001, 105(14): 2707–2717
doi: 10.1021/jp002811v
16 Trost B M, Kallander L S. A versatile enantioselective strategy toward L-C-nucleosides: A total synthesis of L-Showdomycin. Journal of Organic Chemistry , 1999, 64(15): 5427–5435
doi: 10.1021/jo990195x
17 Cheng S H, Hsiao S H, Su T H, Liou G S. Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules , 2005, 38(2): 307–316
doi: 10.1021/ma048774d
18 Wang C, Zhang C, Wang P, Zhu P, Wu W, Ye C, Dalton L R. High Tg donor-embedded polyimides for second-order nonlinear optical applications. Polymer , 2000, 41(7): 2583–2590
doi: 10.1016/S0032-3861(99)00420-6
19 Saegusa Y, Koshikawa T, Nakamura S. Synthesis and characterization of 1,3,4-oxadiazole-containing polyazomethines. Journal of Polymer Science. Part A, Polymer Chemistry , 1992, 30(7): 1369–1373
doi: 10.1002/pola.1992.080300715
20 Reddy P Y, Kondo S, Fujita S, Toru T. Efficient synthesis of fluorophore-linked maleimide derivatives. Synthesis , 1998, 8(9): 999–1002
doi: 10.1055/s-1998-2097
21 Conley N R, Hung R J, Willson C G. A new synthetic route to authentic N-substituted aminomaleimides. Journal of Organic Chemistry , 2005, 70(11): 4553–4555
doi: 10.1021/jo048031q
22 Fruk L, Graham D. The electronic effects on the formation of N-arylmaleimides and isomaleimides. Heterocycles , 2003, 60(10): 2305–2313
doi: 10.3987/COM-03-9843
23 Ivanov D, Constantinescu M. Computational study of maleamic acid cyclodehydration. Journal of Physical Organic Chemistry , 2003, 16(6): 348–354
doi: 10.1002/poc.639
24 Chihab-Eddine A, Daich A, Jilale A, Decroix B. Synthesis and reactivity of (1S)-N-(1-phenylethyl) maleimide towards nucleophiles: An application to preparation of chiral pyrroloisothiochroman and pyrrolobenzo[d]thiepine based on pi-cationic cyclization. Tetrahedron Letters , 2001, 42(4): 573–576
doi: 10.1016/S0040-4039(00)02037-2
25 Clevenger R C, Turnbull K D. Synthesis on N-alkylated maleimides. Synthetic Communications , 2000, 30(8): 1379–1388
doi: 10.1080/00397910008087165
26 Berson J A, Swidler R A. Synthesis of maleimide. Journal of the American Chemical Society , 1954, 76(10): 2835–2836
doi: 10.1021/ja01639a070
27 Hattemer E, Zentel R, Mecher E, Meerholz K. Synthesis and characterization of novel multifunctional high-Tg photorefractive materials obtained via reactive precursor polymers. Macromolecules , 2000, 33(6): 1972–1977
doi: 10.1021/ma990984g
28 Aponte M A, Butler G B. Copolymers containing alternating sequences of nucleic acid-base pairs. I. Monomer synthesis. Journal of Polymer Science. Part A, Polymer Chemistry , 1984, 22(11): 2841–2858
doi: 10.1002/pol.1984.170221110
29 Schwartz A L, Lerner L M. Synthesis and properties of N-(2,3,5-tri-O-acetyl-D-ribofuranosyl) maleimide. Journal of Organic Chemistry , 1975, 40(1): 24–28
doi: 10.1021/jo00889a005
30 King H D, Dubowchik G M, Walker M A. Walker, M. A. Facile synthesis of maleimide bifunctional linkers. Tetrahedron Letters , 2002, 43(11): 1987–1990
doi: 10.1016/S0040-4039(02)00192-2
31 Walker M A. A high yielding synthesis of N-alkyl maleimides using a novel modification of the Mitsunobu reaction. Journal of Organic Chemistry , 1995, 60(16): 5352–5355
doi: 10.1021/jo00121a070
32 Berlin Y A, Hutchison G R, Rempala P, Ratner M A, Michl J. Charge hopping in molecular wires as a sequence of electron-transfer reactions. Journal of Physical Chemistry A , 2003, 107(19): 3970–3980
doi: 10.1021/jp034225i
33 Mataga N, Kaifu Y, Koizumi M. Solvent effects upon fluorescence spectra and the dipole moments of excited molecules. Bulletin of the Chemical Society of Japan , 1956, 29(4): 465–470
doi: 10.1246/bcsj.29.465
34 Von Lippert E Z. Spektroskopische Bestimmung des Dipolmomentes Aromatischer Verbin- dungen im Ersten Angeregten Singuletzustand. Electrochemistry , 1957, 61(9): 962–975
35 Lakowicz J R. Principles of Fluorescence Spectroscopy, 2nd ed. Plenum Press: New York, 1999, 192
36 Kanaoka Y, Machida M, Ando K, Sekine T. N-(1-Anilinonaphthyl-4)maleimide: A fluorescent hydrophobic probe directed to thiol groups in protein. Biochimica et Biophysica Acta , 1970, 207(1): 269–277
doi: 10.1016/0005-2795(70)90019-X
37 Verhey H J, Bekker C H W, Verhoeven J W, Hofstraat J W. A fluorogenic charge-transfer polarity probe for the derivatisation of thiols and amines. New Journal of Chemistry , 1996, 20(7-8): 809–814
[1] Daniel T. Payne, Mandeep K. Chahal, Václav Březina, Whitney A. Webre, Katsuhiko Ariga, Francis D’Souza, Jan Labuta, Jonathan P. Hill. Diporphyrin tweezer for multichannel spectroscopic analysis of enantiomeric excess[J]. Front. Chem. Sci. Eng., 2020, 14(1): 28-40.
[2] Grant Perry, Fernando Cortezon-Tamarit, Sofia I. Pascu. Detection and monitoring prostate specific antigen using nanotechnology approaches to biosensing[J]. Front. Chem. Sci. Eng., 2020, 14(1): 4-18.
[3] Maria L. Odyniec, Jordan E. Gardiner, Adam C. Sedgwick, Xiao-Peng He, Steven D. Bull, Tony D. James. Dual enzyme activated fluorescein based fluorescent probe[J]. Front. Chem. Sci. Eng., 2020, 14(1): 117-121.
[4] Viviana Maffeis, Lisa Moni, Daniele Di Stefano, Silvia Giordani, Renata Riva. Diversity-oriented synthesis of blue emissive nitrogen heterocycles and their conjugation with carbon nano-onions[J]. Front. Chem. Sci. Eng., 2020, 14(1): 76-89.
[5] Takeshi Hashimoto, Mio Kumai, Mariko Maeda, Koji Miyoshi, Yuji Tsuchido, Shoji Fujiwara, Takashi Hayashita. Structural effect of fluorophore on phenylboronic acid fluorophore/cyclodextrin complex for selective glucose recognition[J]. Front. Chem. Sci. Eng., 2020, 14(1): 53-60.
[6] Zipei SUN,Xuelin DONG,Yan ZHAI,Ziyan Li,Yaodong HUANG. 2,5-Dialkoxylphenyl-1,3,4-oxadiazoles as efficient organogelators and their self-assembling property[J]. Front. Chem. Sci. Eng., 2014, 8(2): 219-224.
[7] Meijiang LI, Rui HUANG, Changzhi WU, Hujin ZUO, Guoqiao LAI, Yongjia SHEN. Synthesis and properties of tetrathiafulvalene-porphyrin assemblies[J]. Front Chem Sci Eng, 2011, 5(4): 422-428.
[8] ZHU Xiaoqin, QIAN Ying, LU Zhifeng. Synthesis and characterization of 2,5-bis[4-(2-arylvinyl)phenyl]-1,3,4-oxadiazoles with two-photon fluorescence properties[J]. Front. Chem. Sci. Eng., 2007, 1(4): 381-384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed