Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2014, Vol. 8 Issue (2) : 188-196    https://doi.org/10.1007/s11705-014-1414-1
RESEARCH ARTICLE
Modification of polycarbonateurethane surface with poly(ethylene glycol) monoacrylate and phosphorylcholine glyceraldehyde for anti-platelet adhesion
Jing YANG1,Juan LV1,Bin GAO1,Li ZHANG1,Dazhi YANG1,Changcan SHI1,Jintang GUO1,2,Wenzhong LI4,*(),Yakai FENG1,2,3,*()
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072, China
3. Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
4. University of Rostock, Department of Cardiac Surgery, Reference & Translation Center for Cardiac Stem Cell Therapy, Schillingallee 69, D-18057 Rostock, Germany
 Download: PDF(756 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Poly(ethylene glycol) monoacrylate (PEGMA) is grafted onto polycarbonateurethane (PCU) surface via ultraviolet initiated photopolymerization. The hydroxyl groups of poly(PEGMA) on the surface react with one NCO group of isophorone diisocyanate (IPDI) and another NCO group of IPDI is then hydrolyzed to form amino terminal group, which is further grafted with phosphorylcholine glyceraldehyde to establish a biocompatible hydrophilic structure on the surface. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirm the successful grafting of both PEG and phosphorylcholine functional groups on the surface. The decrease of the water contact angle for the modified film is caused by synergic effect of PEG and phosphorylcholine, which both have the high hydrophilicity. Furthermore, the number of platelets adhered is relative low on the synergetically modified PCU film compared with the PCU film modified only by poly(PEGMA). Our synergic modification method using both PEG and phosphorylcholine may be applied in surface modification of blood-contacting biomaterials and some relevant devices.

Keywords poly(ethylene glycol) monoacrylate      phosphorylcholine      polycarbonateurethane      surface modification      anti-platelet adhesion      biomaterials     
Corresponding Author(s): Wenzhong LI   
Issue Date: 22 May 2014
 Cite this article:   
Jing YANG,Juan LV,Bin GAO, et al. Modification of polycarbonateurethane surface with poly(ethylene glycol) monoacrylate and phosphorylcholine glyceraldehyde for anti-platelet adhesion[J]. Front. Chem. Sci. Eng., 2014, 8(2): 188-196.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1414-1
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I2/188
Fig.1  Schematic illustration of grafting PEGMA and PCGA onto PCU surface
Fig.2  Reaction of -N=C=O with H2O to form amino group on the film surface
Fig.3  FT-IR spectra of blank PCU, PCU-PEGMA, PCU-PEGMA-NH2 and PCU-PEGMA-PC films
Fig.4  XPS spectra of blank PCU, PCU-PEGMA and PCU-PEGMA-PC films
Material IDAtomic concentration /%O : C /%
C(1s)O(1s)N(1s)P(2p)
Blank PCU77.920.12.00.025.8
PCU-PEGMA75.722.51.80.029.7
PCU-PEGMA-PC76.421.12.20.327.6
Tab.1  Surface elemental composition of the blank and modified PCU films by XPS
Fig.5  Water contact angles of blank PCU, PCU-PEGMA, PCU-PEGMA-NH2 and PCU-PEGMA-PC films
Fig.6  SEM images of adhered platelets on (A) blank PCU, (B) PCU-PEGMA and (C) PCU-PEGMA-PC films
Fig.7  Quantification of platelets adhered on the blank PCU, PCU-PEGMA and PCU-PEGMA-PC films
1 KushwahaM, AndersonJ M, BosworthC A, AndukuriA, MinorW P, LancasterJ R J Jr, AndersonP G, BrottB C, JunH W. A nitric oxide releasing, self assembled peptide amphiphile matrix that mimics native endothelium for coating implantable cardiovascular devices. Biomaterials, 2010, 31(7): 1502–1508
doi: 10.1016/j.biomaterials.2009.10.051
2 OkoshiT, SoldaniG, GoddardM, GallettiP M. Very small diameter polyurethane vascular prostheses with rapid endothelialization for coronary artery bypass grafting. Journal of Thoracic and Cardiovascular Surgery, 1993, 105(5): 791–795
3 IsenbergB C, WilliamsC, TranquilloR T. Small-diameter artificial arteries engineered in vitro. Circulation Research, 2006, 98(1): 25–35
doi: 10.1161/01.RES.0000196867.12470.84
4 WangH Y, FengY K, BehlM, LendleinA, ZhaoH Y, XiaoR F, LuJ, ZhangL, GuoJ T. Hemocompatible PU/gelatin-heparin nanofibrous scaffolds as potential artificial blood vessels by bi-layer electrospinning technique. Frontiers of Chemical Science and Engineering, 2011, 5(3): 392–400
doi: 10.1007/s11705-011-1202-0
5 FengY K, MengF R, XiaoR F, ZhaoH Y, GuoJ T. Electrospinning of polycarbonate urethane biomaterials. Frontiers of Chemical Science and Engineering, 2011, 5(1): 11–18
doi: 10.1007/s11705-010-1011-x
6 FengY K, XueY, GuoJ T, ChengL, JiaoL C, ZhangL, YueJ L. Synthesis and characterization of poly(carbonate urethane) networks with shape-memory properties. Journal of Applied Polymer Science, 2009, 112(1): 473–478
doi: 10.1002/app.29426
7 BehlM, RidderU, FengY K, KelchS, LendleinA. Shape-memory capability of binary multiblock copolymer blends with hard and switching domains provided by different components. Soft Matter, 2009, 5(3): 676–684
doi: 10.1039/b810583a
8 GuoJ T, YinJ W, FengY K. Synthesis and characterization of HDI/MDI-polycarbonate urethanes. Transaction of Tianjin University, 2010, 16(5): 317–321
doi: 10.1007/s12209-010-1506-z
9 HsuS H, KaoY C, LinZ C. Enhanced biocompatibility in biostable poly(carbonate)urethane. Macromolecular Bioscience, 2004, 19, 4(4): 464–470
10 SeifalianA M, SalacinskiH J, TiwariA, EdwardsA, BowaldS, HamiltonG. In vivo biostability of a poly(carbonate-urea)urethane graft. Biomaterials, 2003, 24(14): 2549–2557
doi: 10.1016/S0142-9612(02)00608-7
11 ChandyT, VanH J, NettekovenW, JohnsonJ. Long-term in vitro stability assessment of polycarbonate urethane micro catheters: resistance to oxidation and stress cracking. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009, 89(2): 314–324
12 JohnB J, FurukawaM. Enhanced mechanical properties of polyamide 6 fibers coated with a polyurethane thin film. Polymer Engineering and Science, 2009, 49(10): 1970–1978
doi: 10.1002/pen.21432
13 AjiliS H, EbrahimiN G, KhorasaniM T. Study on thermoplastic polyurethane/polypropylene (TPU/PP) blend as a blood bag material. Journal of Applied Polymer Science, 2003, 89(9): 2496–2501
doi: 10.1002/app.12180
14 FengY K, ZhangS F, WangH Y, ZhaoH Y, LuJ, GuoJ T, BehlM, LendleinA. Drug release from biodegradable polyesterurethanes with shape-memory effect. Journal of Controlled Release, 2011, 152(Suppl 1): e20–e21
doi: 10.1016/j.jconrel.2011.08.097
15 WeiY, JiY, XiaoL L, LinQ K, XuJ P, RenK F, JiJ. Surface engineering of cardiovascular stent with endothelial cell selectivity for in vivo re-endothelialisation. Biomaterials, 2013, 34(11): 2588–2599
doi: 10.1016/j.biomaterials.2012.12.036
16 GuoJ T, FengY K, YeY Q, ZhaoH Y. Construction of hemocompatible polycarbonate urethane with sulfoammonium zwitterionic polyethylene glycol. Journal of Applied Polymer Science, 2011, 122(2): 1084–1091
doi: 10.1002/app.34214
17 WuZ Q, ChenH, HuangH, ZhaoT L, LiuX L, LiD, YuQ. A facile approach to modify polyurethane surfaces for biomaterial applications. Macromolecular Bioscience, 2009, 9(12): 1165–1168
doi: 10.1002/mabi.200900221
18 LiJ, LinF, LiL D, LiJ, LiuS. Surface engineering of poly(ethylene terephthalate) for durable hemocompatibility via a surface interpenetrating network technique. Macromolecular Chemistry and Physics, 2012, 213(20): 2120–2129
doi: 10.1002/macp.201200251
19 MelA D, JellG, StevensM M, SeifalianA M. Biofunctionalization of biomaterials for accelerated in situ endothelialization: A review. Biomacromolecules, 2008, 9(11): 2969–2979
doi: 10.1021/bm800681k
20 ZhuH G, JiJ, ShenJ C. Surface engineering of poly(DL-lactic acid) by entrapment of biomacromolecules. Macromolecular Rapid Communications, 2002, 23(14): 819–823
doi: 10.1002/1521-3927(20021001)23:14<819::AID-MARC819>3.0.CO;2-9
21 KhanM, FengY K, YangD Z, ZhouW, TianH, HanY, ZhangL, YuanW J, ZhangJ, GuoJ T, ZhangW C. Biomimetic design of amphiphilic polycations and surface grafting onto polycarbonate urethane film as effective antibacterial agents with controlled hemocompatibility. Journal of Polymer Science. Part A, Polymer Chemistry, 2013, 51(15): 3166–3176
doi: 10.1002/pola.26703
22 GonçalvesaS, LeirósaA, KootenbT V, DouradoaF, RodriguesL R. Physicochemical and biological evaluation of poly(ethylene glycol) methacrylate grafted onto poly(dimethyl siloxane) surfaces for prosthetic devices. Colloids and Surfaces. B, Biointerfaces, 2013, 109(1): 228–235
doi: 10.1016/j.colsurfb.2013.03.050
23 JiJ, FengL X, QiuY X, YuX J. Stearyl poly(ethylene oxide) grafted surface for preferential adsorption of part 2.The effect of the molecule mobility onto protein adsorption. Polymer, 2000, 41(10): 3713–3718
doi: 10.1016/S0032-3861(99)00556-X
24 SeongbongJ, KinamP. Surface modification using silanated poly(ethylene glycol)s. Biomaterials, 2000, 21(6): 605–616
25 WangH Y, FengY K, FangZ C, YuanW J, KhanM. Co-electrospun blends of PU and PEG as potential biocompatible scaffolds for small-diameter vascular tissue engineering. Materials Science and Engineering C, 2012, 32(8): 2306–2315
doi: 10.1016/j.msec.2012.07.001
26 ZhaoH Y, FengY K, GuoJ T. Grafting of poly(ethylene glycol) monoacrylate onto polycarbonateurethane surfaces by ultraviolet radiation grafting polymerization to control hydrophilicity. Journal of Applied Polymer Science, 2011, 119(6): 3717–3727
doi: 10.1002/app.32997
27 YuanW J, FengY K, WangH Y, YangD Z, AnB, ZhangW C, KhanM, GuoJ T. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification. Materials Science and Engineering: C, 2013, 33(7): 3644–3651
28 PerttuaE K, SzokaF C. Zwitterionic sulfobetaine lipids that form vesicles with salt-dependent thermotropic properties. Chemical Communications, 2011, 47(47): 12613–12615
doi: 10.1039/c1cc15804j
29 FengY K, YangD Z, BehlM, LendleinA, ZhaoH Y, GuoJ T. The influence of zwitterionic phospholipid brushes grafted via UV-initiated or SI-ATR polymerization on the hemocompatibility of polycarbonateurethane. Macromolecular Symposia, 2011, 309–310(1): 6–15
doi: 10.1002/masy.201100034
30 FengY K, YangD Z, ZhaoH Y, GuoJ T, ChenQ L, LiuJ S. Grafting sulfoammonium zwitterionic brushes onto polycarbonateurethane surface to improve hemocompatibility. Advanced Materials Research, 2011, 306–307: 1631–1634
doi: 10.4028/www.scientific.net/AMR.306-307.1631
31 ShihY J, LaiC J, KungH H, JiangS Y. Blood-inert surfaces via ion-pair anchoring of zwitterionic copolymer brushes in human whole blood. Advanced Functional Materials, 2013, 23(9): 1100–1110
doi: 10.1002/adfm.201201386
32 ShihY J, ChangY. Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of zwitterionic nonfouling nature in aqueous solution. Langmuir, 2010, 26(22): 17286–17294
doi: 10.1021/la103186y
33 WangM, YuanJ, HuangX, CaiX, LiL, ShenJ. Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility. Colloids and Surfaces. B, Biointerfaces, 2013, 103: 52–58
doi: 10.1016/j.colsurfb.2012.10.025
34 LiuG Y, HuX F, ChenC J, JiJ. Construct biomimetic giant vesicles via self-assembly of poly(2-methacryloyloxyethyl phosphorylcholine)- block-poly (D,L- lactide). Journal of Applied Polymer Science, 2010, 118(6): 3197–3202
doi: 10.1002/app.32758
35 GaoB, FengY K, LuJ, ZhangL, ZhaoM, ShiC C, KhanM, GuoJ T. Grafting of phosphorylcholine functional groups on polycarbonate urethane surface for resisting platelet adhesion. Materials Science and Engineering C, 2013, 33(5): 2871–2878
doi: 10.1016/j.msec.2013.03.007
36 LuJ, FengY K, GaoB, GuoJ T. Preparation and characterization of phosphorylcholine glyceraldehyde grafted polycarbonateurethane films. Journal of Polymer Research, 2012, 19(9): 9959–9969
doi: 10.1007/s10965-012-9959-5
37 GaoW, FengY K, LuJ, KhanM, GuoJ T. Biomimetic surface modification of polycarbonateurethane film via phosphorylcholine-graft for resisting platelet adhesion. Macromolecular Research, 2012, 20(10): 1063–1069
doi: 10.1007/s13233-012-0152-9
38 TanM Q, FengY K, WangH Y, ZhangL, KhanM, GuoJ T, ChenQ L, LiuJ S. Immobilized bioactive agents onto polyurethane surface with heparin and phosphorylcholine group. Macromolecular Research, 2013, 21(5): 541–549
doi: 10.1007/s13233-013-1028-3
39 LuJ, FengY K, GaoB, GuoJ T. Grafting of a novel phosphorylcholine-containing vinyl monomer onto polycarbonateurethane surfaces by ultraviolet radiation grafting polymerization. Macromolecular Research, 2012, 20(7): 693–702
doi: 10.1007/s13233-012-0104-4
40 AlbrechtW, SeifertB, WeigelT, SchossigM, HolländerA, GrothT, HilkeR. Amination of poly(ether imide) membranes using di- and multivalent amines. Macromolecular Chemistry and Physics, 2003, 204(3): 510–521
doi: 10.1002/macp.200390016
41 JiangH, WangX B, LiC Y, LiJ S, XuF J, MaoC, YangW T, ShenJ. Improvement of hemocompatibility of polycaprolactone film surfaces with zwitterionic polymer brushes. Langmuir, 2011, 27(18): 11575–11581
doi: 10.1021/la202101q
42 LiD, ChenH, McClungW G, BrashJ L. Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clotlysis. Acta Biomaterialia, 2009, 5(6): 1864–1871
doi: 10.1016/j.actbio.2009.03.001
43 FengY K, ZhaoH Y, BehlM, LendleinA, GuoJ T, YangD Z. Grafting of poly(ethylene glycol) monoacrylates on polycarbonateurethane by UV initiated polymerization for improving hemocompatibility. Journal of Materials Science. Materials in Medicine, 2013, 24(1): 61–70
doi: 10.1007/s10856-012-4685-4
44 LomölderR, PlogmannF, SpeierP. Selectivity of isophorone diisocyanate in the urethane reaction influence of temperature, catalysis, and reaction partners. Journal of Coatings Technology, 1997, 69(868): 51–57
doi: 10.1007/BF02696250
45 MiyazawaK, WinnikF M, MiyazawaK, WinnikF O M. Solution properties of phosphorylcholine-based hydrophobically modified polybetaines in water and mixed solvents. Macromolecules, 2002, 35(25): 9536–9544
doi: 10.1021/ma021129r
[1] Hong Xu, Yulin Dai, Honghai Cao, Jinglei Liu, Li Zhang, Mingjie Xu, Jun Cao, Peng Xu, Jianshu Liu. Tubes with coated and sintered porous surface for highly efficient heat exchangers[J]. Front. Chem. Sci. Eng., 2018, 12(3): 367-375.
[2] CHEN Hanjia, SHI Xuhua, ZHU Yafei, ZHANG Yi, XU Jiarui. Synthesis and characterization of macromolecular surface modifier PP--PEG for polypropylene[J]. Front. Chem. Sci. Eng., 2008, 2(1): 102-108.
[3] PENG Xuhui, LE Yuan, BIAN Shuguang, LI Woyuan, WU Wei, DAI Haitao, CHEN Jianfeng. Surface modification of titanium dioxide for electrophoretic particles[J]. Front. Chem. Sci. Eng., 2007, 1(4): 338-342.
[4] WANG Neng, DING Enyong, CHENG Rongshi. Surface modification of cellulose nanocrystals[J]. Front. Chem. Sci. Eng., 2007, 1(3): 228-232.
[5] CHEN Gufeng, ZHANG Yi, XU Jiarui, ZHU Yafei. Grafting of PEG400 onto the surface of LLDPE/SMA film[J]. Front. Chem. Sci. Eng., 2007, 1(2): 128-131.
[6] ZHANG Bo, XING Jianmin, LIU Huizhou. Preparation and application of magnetic microsphere carriers[J]. Front. Chem. Sci. Eng., 2007, 1(1): 96-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed