Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2014, Vol. 8 Issue (3) : 353-361    https://doi.org/10.1007/s11705-014-1421-2
RESEARCH ARTICLE
Immobilization of β-glucuronidase in lysozyme-induced biosilica particles to improve its stability
Xiaokai SONG1,Zhongyi JIANG1,2,Lin LI1,Hong WU1,2,*()
1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
 Download: PDF(823 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mesoporous silica particles were prepared for efficient immobilization of the β-glucuronidase (GUS) through a biomimetic mineralization process, in which the solution containing lysozyme and GUS were added into the prehydrolyzed tetraethoxysilane (TEOS) solution. The silica particles were formed in a way of biomineralization under the catalysis of lysozyme and GUS was immobilized into the silica particles simultaneously during the precipitation process. The average diameter of the silica particles is about 200 nm with a pore size of about 4 nm. All the enzyme molecules are tightly entrapped inside the biosilica nanoparticles without any leaching even under a high ionic strength condition. The immobilized GUS exhibits significantly higher thermal and pH stability as well as the storage and recycling stability compared with GUS in free form. No loss in the enzyme activity of the immobilized GUS was found after 30-day’s storage, and the initial activity could be well retained after 12 repeated cycles.

Keywords storage and recycling stability      silica nanoparticles      biocatalysis      biomimetic synthesis      β-glucuronidase encapsulation     
Corresponding Author(s): Hong WU   
Issue Date: 11 October 2014
 Cite this article:   
Xiaokai SONG,Zhongyi JIANG,Lin LI, et al. Immobilization of β-glucuronidase in lysozyme-induced biosilica particles to improve its stability[J]. Front. Chem. Sci. Eng., 2014, 8(3): 353-361.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1421-2
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I3/353
Fig.1  TEM images of (a) the pristine lysozyme-induced biosilica particles and (b) those with GUS inside
Fig.2  N2 adsorption-desorption isotherm and pore size distribution of the biosilica particles
Fig.3  29Si NMR of the lysozyme-induced biosilica
Fig.4  Scheme 1 Schematic view of the immobilization process of GUS in biosilica particles
Fig.5  Effect of (a) temperature and (b) pH on the activity of free and immobilized GUSs
Fig.6  (a) Thermal and (b) pH stability of free and immobilized GUSs
Fig.7  Productivity of baicalein with reaction time
GUSKm/mMVmax/(μmmol·min?1·mg-GUS?1)Apparent specific activity/U·mg?1
Free0.191.7028
Immobilized0.850.947.6
Tab.1  Kinetic parameters for free and immobilized GUS
Fig.8  Storage stability of free and immobilized GUSs
Fig.9  Recycling stability of immobilized GUS
1 Lee C H, Lin T S, Mou C Y. Mesoporous materials for encapsulating enzymes. Nano Today, 2009, 4(2): 165–179
https://doi.org/10.1016/j.nantod.2009.02.001
2 Schmid A, Dordick J S, Hauer B, Kiener A, Wubbolts M, Witholt B. Industrial biocatalysis today and tomorrow. Nature, 2001, 409(6817): 258–268
https://doi.org/10.1038/35051736
3 Bornscheuer U T. Immobilizing enzymes: How to create more suitable biocatalysts. Angewandte Chemie International Edition, 2003, 42(29): 3336–3337
https://doi.org/10.1002/anie.200301664
4 Eggers D K, Valentine J S. Molecular confinement influences protein structure and enhances thermal protein stability. Protein Science, 2008, 10(2): 250–261
https://doi.org/10.1110/ps.36201
5 Kim J, Grate J W, Wang P. Nanostructures for enzyme stabilization. Chemical Engineering Science, 2006, 61(3): 1017–1026
https://doi.org/10.1016/j.ces.2005.05.067
6 Pioselli B, Bettati S, Mozzarelli A. Confinement and crowding effects on tryptophan synthase α2β2 complex. FEBS Letters, 2005, 579(10): 2197–2202
https://doi.org/10.1016/j.febslet.2005.03.011
7 Reátegui E, Aksan A.Structural changes in confined lysozyme. Journal of biomechanical engineering, 2009, 131(7): 074520.1–074520.4
8 Zhou H X. Protein folding in confined and crowded environments. Archives of Biochemistry and Biophysics, 2008, 469(1): 76–82
https://doi.org/10.1016/j.abb.2007.07.013
9 Zhou H X. Protein folding and binding in confined spaces and in crowded solutions. Journal of Molecular Recognition, 2004, 17(5): 368–375
https://doi.org/10.1002/jmr.711
10 Zhou H X, Dill K A. Stabilization of proteins in confined spaces. Biochemistry, 2001, 40(38): 11289–11293
https://doi.org/10.1021/bi0155504
11 Avnir D, Coradin T, Lev O, Livage J. Recent bio-applications of sol-gel materials. Journal of Materials Chemistry, 2006, 16(11): 1013–1030
https://doi.org/10.1039/b512706h
12 Kim Y H, Lee I, Choi S H, Lee O K, Shim J, Lee J, Kim J, Lee E Y. Enhanced stability and reusability of marine epoxide hydrolase using ship-in-a-bottle approach with magnetically-separable mesoporous silica. Journal of Molecular Catalysis. B, Enzymatic, 2013, 89: 48–51
https://doi.org/10.1016/j.molcatb.2012.12.012
13 Pastor I, Ferrer M L, Lillo M P, Gómez J, Mateo C R. Structure and dynamics of lysozyme encapsulated in a silica sol-gel matrix. Journal of Physical Chemistry B, 2007, 111(39): 11603–11610
https://doi.org/10.1021/jp074790b
14 Khanna S, Goyal A, Moholkar V S. Mechanistic investigation of ultrasonic enhancement of glycerol bioconversion by immobilized clostridium pasteurianum on silica support. Biotechnology and Bioengineering, 2013, 110(6): 1637–1645
https://doi.org/10.1002/bit.24839
15 Luckarift H R, Spain J C, Naik R R, Stone M O. Enzyme immobilization in a biomimetic silica support. Nature Biotechnology, 2004, 22(2): 211–213
https://doi.org/10.1038/nbt931
16 Pouget E, Dujardin E, Cavalier A, Moreac A, Valéry C, Marchi-Artzner V, Weiss T, Renault A, Paternostre M, Artzner F. Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. Nature Materials, 2007, 6(6): 434–439
https://doi.org/10.1038/nmat1912
17 Rusu V M, Ng C H, Wilke M, Tiersch B, Fratzl P, Peter M G. Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials. Biomaterials, 2005, 26(26): 5414–5426
https://doi.org/10.1016/j.biomaterials.2005.01.051
18 Zhang Y F, Wu H, Li L, Li J, Jiang Z Y, Jiang Y J, Chen Y. Enzymatic conversion of baicalin into baicalein by β-glucuronidase encapsulated in biomimetic core-shell structured hybrid capsules. Journal of Molecular Catalysis. B, Enzymatic, 2009, 57(1-4): 130–135
https://doi.org/10.1016/j.molcatb.2008.08.005
19 Naik R R, Tomczak M M, Luckarift H R, Spain J C, Stone M O. Entrapment of enzymes and nanoparticles using biomimetically synthesized silica. Chemical Communications, 2004, (15): 1684–1685
https://doi.org/10.1039/b404586f
20 Miller S A, Hong E D, Wright D. Rapid and efficient enzyme encapsulation in a dendrimer silica nanocomposite. Macromolecular Bioscience, 2006, 6(10): 839–845
https://doi.org/10.1002/mabi.200600140
21 Zhang Y F, Wu H, Li J, Li L, Jiang Y J, Jiang Z Y, Jiang Z. Protamine-templated biomimetic hybrid capsules: Efficient and stable carrier for enzyme encapsulation. Chemistry of Materials, 2008, 20(3): 1041–1048
https://doi.org/10.1021/cm701959e
22 Naik R R, Brott L L, Clarson S J, Stone M O. Silica-precipitating peptides isolated from a combinatorial phage display peptide library. Journal of Nanoscience and Nanotechnology, 2002, 2(1): 95–100
https://doi.org/10.1166/jnn.2002.074
23 Kroger N, Deutzmann R, Sumper M. Silica-precipitating peptides from diatoms. Journal of Biological Chemistry, 2001, 276(28): 26066–26070
https://doi.org/10.1074/jbc.M102093200
24 Luckarift H R, Dickerson M B, Sandhage K H, Spain J C. Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania. Small, 2006, 2(5): 640–643
https://doi.org/10.1002/smll.200500376
25 Coradin T, Coupé A, Livage J. Interactions of bovine serum albumin and lysozyme with sodium sil<?Pub Caret?>icate solutions. Colloids and Surfaces. B, Biointerfaces, 2003, 29(2-3): 189–196
https://doi.org/10.1016/S0927-7765(02)00208-4
26 Shiomi T, Tsunoda T, Kawai A, Mizukami F, Sakaguchi K. Synthesis of a cagelike hollow aluminosilicate with vermiculate micro-through-holes and its application to ship-in-bottle encapsulation of protein. Small, 2009, 5(1): 67–71
https://doi.org/10.1002/smll.200800834
27 Ramanathan M, Luckarift H R, Sarsenova A, Wild J R, Ramanculov E K, Olsen E V, Simonian A L. Lysozyme-mediated formation of protein-silica nano-composites for biosensing applications. Colloids and Surfaces. B, Biointerfaces, 2009, 73(1): 58–64
https://doi.org/10.1016/j.colsurfb.2009.04.024
28 Garakani T M, Wang H H, Krappitz T, Liebeck B M, Vanrijn P, Boker A. Lysozyme-silica hybrid materials: From nanoparticles to capsules and double emulsion mineral capsules. Chemical Communications, 2012, 48(82): 10210–10212
https://doi.org/10.1039/c2cc34576e
29 Ivnitski D, Artyushkova K, Rincon R A, Atanassov P, Luckarift H R, Johnson G R. Entrapment of enzymes and carbon nanotubes in biologically synthesized silica: Glucose oxidase-catalyzed direct electron transfer. Small, 2008, 4(3): 357–364
https://doi.org/10.1002/smll.200700725
30 Luckarift H R, Balasubramanian S, Paliwal S, Johnson G R, Simonian A L. Enzyme-encapsulated silica monolayers for rapid functionalization of a gold surface. Colloids and Surfaces. B, Biointerfaces, 2007, 58(1): 28–33
https://doi.org/10.1016/j.colsurfb.2006.08.013
31 Cao X D, Yu J C, Zhang Z Q, Liu S Q. Bioactivity of horseradish peroxidase entrapped in silica nanospheres. Biosensors & Bioelectronics, 2012, 35(1): 101–107
https://doi.org/10.1016/j.bios.2012.02.027
32 Cushnie T, Lamb A J. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 2005, 26(5): 343–356
https://doi.org/10.1016/j.ijantimicag.2005.09.002
33 Ma Z, Otsuyama K i, Liu S, Abroun S, Ishikawa H, Tsuyama N, Obata M, Li F J, Zheng X, Maki Y. Baicalein, a component of scutellaria radix from Huang-Lian-Jie-Du-Tang (HLJDT), leads to suppression of proliferation and induction of apoptosis in human myeloma cells. Blood, 2005, 105(8): 3312–3318
https://doi.org/10.1182/blood-2004-10-3915
34 Zhu J T, Choi R C, Chu G K, Cheung A W, Gao Q T, Li J, Jiang Z Y, Dong T T, Tsim K W. Flavonoids possess neuroprotective effects on cultured pheochromocytoma PC12 cells: A comparison of different flavonoids in activating estrogenic effect and in preventing β-amyloid-induced cell death. Journal of Agricultural and Food Chemistry, 2007, 55(6): 2438–2445
https://doi.org/10.1021/jf063299z
35 Matte C R, Nunes M R, Benvenutti E V, Sch?ffer J N, Ayub M A Z, Hertz P F. Sch?ffer J d N, Ayub M A Z, Hertz P F. Characterization of cyclodextrin glycosyltransferase immobilized on silica microspheres via aminopropyltrimethoxysilane as a “spacer arm”. Journal of Molecular Catalysis. B, Enzymatic, 2012, 78: 51–56
https://doi.org/10.1016/j.molcatb.2012.01.003
36 Martín M T, Plou F J, Alcalde M, Ballesteros A. Immobilization on Eupergit C of cyclodextrin glucosyltransferase (CGTase) and properties of the immobilized biocatalyst. Journal of Molecular Catalysis. B, Enzymatic, 2003, 21(4-6): 299–308
https://doi.org/10.1016/S1381-1177(02)00264-3
37 Miller S A, Hong E D, Wright D. Rapid and efficient enzyme encapsulation in a dendrimer silica nanocomposite. Macromolecular Bioscience, 2006, 6(10): 839–845
[1] YANG Ming, XU Yan, MU Xiaoqing, XIAO Rong. Purification and characterization of a novel carbonyl reductase with high stereo-selectivity[J]. Front. Chem. Sci. Eng., 2007, 1(4): 404-410.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed