Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2014, Vol. 8 Issue (2) : 133-140    https://doi.org/10.1007/s11705-014-1422-1
RESEARCH ARTICLE
Ni/MgO catalyst prepared via dielectric-barrier discharge plasma with improved catalytic performance for carbon dioxide reforming of methane
Yan LI(),Zhehao WEI,Yong WANG
Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
 Download: PDF(1399 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A Ni/MgO catalyst was prepared via novel dielectric-barrier discharge (DBD) plasma decomposition method. The combined characterization of Brunauer-Emmett-Teller measurement, X-ray diffraction, hydrogen temperature-programmed reduction and transmission electron microscopy shows that DBD plasma treatment enhances the support-metal interaction of Ni/MgO catalyst and facilitates the formation of smaller Ni particles. Sphere-like Ni particles form on plasma treated Ni/MgO catalysts. The plasma treated Ni/MgO catalyst shows a significantly improved low temperature activity and good stability for CO2 reforming of methane to syngas.

Keywords CO2 reforming      methane      dielectric-barrier discharge (DBD)      plasma      Ni/MgO     
Corresponding Author(s): Yan LI   
Issue Date: 22 May 2014
 Cite this article:   
Yan LI,Zhehao WEI,Yong WANG. Ni/MgO catalyst prepared via dielectric-barrier discharge plasma with improved catalytic performance for carbon dioxide reforming of methane[J]. Front. Chem. Sci. Eng., 2014, 8(2): 133-140.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1422-1
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I2/133
Fig.1  Schematic illustration of DBD plasma generator
Fig.2  XRD patterns of C-NiO/MgO, P-NiO/MgO, NiO and MgO
CatalystSBET/(m2·g-1)Ni wt-%Ni atomic ratio / %Mg atomic ratio / %Ni/Mg ratio
MgO158.9
P-NiO/MgO49.125.72.622.411: 100
C-NiO/MgO50.825.73.022.813: 100
Tab.1  BET surface area and surface atom composition of C-NiO/MgO and P-NiO/MgO
Fig.3  H2-TPR profiles of the C-Ni/MgO and P-Ni/MgO samples
Fig.4  High-resolution TEM images and EDX spectra of the Ni particles in the C-Ni/MgO sample
Fig.5  High-resolution TEM images and EDX spectra of the Ni particles in the P-Ni/MgO sample
Fig.6  Particle size distributions of (a) C- Ni/MgO and (b) P-Ni/MgO
Fig.7  The CH4 and CO2 conversions and CO and H2 yields over P-Ni/MgO and C-Ni/MgO catalysts in carbon dioxide reforming of methane for 5 h
Fig.8  (a) The conversions of CO2 and CH4 and (b) the yields of CO and H2 for the C-Ni/MgO and P-Ni/MgO samples at 700°C, 750°C and 800°C
1 LiF X, FanL S. Clean coal conversion processes—progress and challenges. Energy & Environmental Science, 2008, 1(2): 248–267
doi: 10.1039/b809218b
2 WeiZ, SunJ, LiY, DatyeA K, WangY. Bimetallic catalysts for hydrogen generation. Chemical Society Reviews, 2012, 41(24): 7994–8008
doi: 10.1039/c2cs35201j pmid: 23011345
3 SongC S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, 2006, 115(1–4): 2–32
doi: 10.1016/j.cattod.2006.02.029
4 ChilingarG V, SorokhtinO G, KhilyukL, GorfunkelM V. Greenhouse gases and greenhouse effect. Environmental Geology, 2009, 58(6): 1207–1213
doi: 10.1007/s00254-008-1615-3
5 WangY H, LiuH M, XuB Q. Durable Ni/MgO catalysts for CO2 reforming of methane: Activity and metal-support interaction. Journal of Molecular Catalysis A Chemical, 2009, 299(1–2): 44–52
doi: 10.1016/j.molcata.2008.09.025
6 FooS Y, ChengC K, NguyenT H, AdesinaA A. Kinetic study of methane CO2 reforming on Co-Ni/Al2O3 and Ce-Co-Ni/Al2O3 catalysts. Catalysis Today, 2011, 164(1): 221–226
doi: 10.1016/j.cattod.2010.10.092
7 RostrupnielsenJ R, HansenJ H B. CO2-reforming of methane over transition metals. Journal of Catalysis, 1993, 144(1): 38–49
doi: 10.1006/jcat.1993.1312
8 WeiJ M, IglesiaE. Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals. Journal of Physical Chemistry B, 2004, 108(13): 4094–4103
doi: 10.1021/jp036985z
9 LiuC J, YeJ, JiangJ, PanY. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. Chemcatchem, 2011, 3(3): 529–541
doi: 10.1002/cctc.201000358
10 LiY, LiuC J. Effects of DBD plasma on morphological control of Cu(NO3)2·3H2O crystallization from aqueous solution. CIESC Journal, 2010, 61(10): 2754–2757
11 LiY, KuaiP, HuoP, LiuC J. Fabrication of CuO nanofibers via the plasma decomposition of Cu(OH)2. Materials Letters, 2009, 63(2): 188–190
doi: 10.1016/j.matlet.2008.09.043
12 XieY, WeiZ, LiuC J, CuiL, WangC. Morphologic evolution of Au nanocrystals grown in ionic liquid by plasma reduction. Journal of Colloid and Interface Science, 2012, 374(1): 40–44
doi: 10.1016/j.jcis.2012.01.025 pmid: 22369984
13 WeiZ, LiuC J. Synthesis of monodisperse gold nanoparticles in ionic liquid by applying room temperature plasma. Materials Letters, 2011, 65(2): 353–355
doi: 10.1016/j.matlet.2010.10.030
14 HuaW, JinL, HeX, LiuJ, HuH. Preparation of Ni/MgO catalyst for CO2 reforming of methane by dielectric-barrier discharge plasma. Catalysis Communications, 2010, 11(11): 968–972
doi: 10.1016/j.catcom.2010.04.007
15 QinP, XuH Y, LongH L, RanY, ShangS Y, YinY X, DaiX Y. Ni/MgO catalyst prepared using atmospheric high-frequency discharge plasma for CO2 reforming of methane. Journal of Natural Gas Chemistry, 2011, 20(5): 487–492
doi: 10.1016/S1003-9953(10)60228-9
16 YanX L, LiuC J. Effect of the catalyst structure on the formation of carbon nanotubes over Ni/MgO catalyst. Diamond and Related Materials, 2013, 31: 50–57
doi: 10.1016/j.diamond.2012.11.001
17 PanY X, LiuC J, ShiP. Preparation and characterization of coke resistant Ni/SiO2 catalyst for carbon dioxide reforming of methane. Journal of Power Sources, 2008, 176(1): 46–53
doi: 10.1016/j.jpowsour.2007.10.039
18 ChengD G, ZhuX, BenY, HeF, CuiL, LiuC J. Carbon dioxide reforming of methane over Ni/Al2O3 treated with glow discharge plasma. Catalysis Today, 2006, 115(1–4): 205–210
doi: 10.1016/j.cattod.2006.02.063
19 YanX, LiuY, ZhaoB, WangY, LiuC J. Enhanced sulfur resistance of Ni/SiO2 catalyst for methanation via the plasma decomposition of nickel precursor. Physical Chemistry Chemical Physics, 2013, 15(29): 12132–12138
doi: 10.1039/c3cp50694k pmid: 23670520
20 NurunnabiM, LiB, KunimoriK, SuzukiK, FujimotoK i, TomishigeK. Performance of NiO-MgO solid solution-supported Pt catalysts in oxidative steam reforming of methane. Applied Catalysis A, General, 2005, 292: 272–280
doi: 10.1016/j.apcata.2005.06.022
21 HuY H. Solid-solution catalysts for CO2 reforming of methane. Catalysis Today, 2009, 148(3–4): 206–211
doi: 10.1016/j.cattod.2009.07.076
22 HuY H, RuckensteinE. The characterization of a highly effective NiO/MgO solid solution catalyst in the CO2 reforming of CH4. Catalysis Letters, 1997, 43(1–2): 71–77
doi: 10.1023/A:1018982304573
23 MoriH, WenC J, OtomoJ, EguchiK, TakahashiH. Investigation of the interaction between NiO and yttria-stabilized zirconia (YSZ) in the NiO/YSZ composite by temperature-programmed reduction technique. Applied Catalysis A, General, 2003, 245(1): 79–85
doi: 10.1016/S0926-860X(02)00634-8
24 ParmalianaA, ArenaF, FrusteriF, GiordanoN. Temperature-programmed reduction study of NiO-MgO interactions in magnesia-supported Ni catalysts and NiO-MgO physical mixture. Journal of the Chemical Society, Faraday Transactions, 1990, 86(14): 2663–2669
doi: 10.1039/ft9908602663
25 ZhangJ, WangH, DalaiA K. Kinetic studies of carbon dioxide reforming of methane over Ni-Co/Al-Mg-O bimetallic catalyst. Industrial & Engineering Chemistry Research, 2009, 48(2): 677–684
doi: 10.1021/ie801078p
26 DamyanovaS, PawelecB, ArishtirovaK, FierroJ L G. Ni-based catalysts for reforming of methane with CO2. International Journal of Hydrogen Energy, 2012, 37(21): 15966–15975
doi: 10.1016/j.ijhydene.2012.08.056
27 WeiJ, IglesiaE. Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium. Journal of Catalysis, 2004, 225(1): 116–127
doi: 10.1016/j.jcat.2003.09.030
28 WeiJ, IglesiaE. Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. Journal of Catalysis, 2004, 224(2): 370–383
doi: 10.1016/j.jcat.2004.02.032
[1] Sen Wang, Shiyun Liu, Danhua Mei, Rusen Zhou, Congcong Jiang, Xianhui Zhang, Zhi Fang, Kostya (Ken) Ostrikov. Liquid discharge plasma for fast biomass liquefaction at mild conditions: The effects of homogeneous catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 763-771.
[2] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[3] Xiuhui Huang, Junfeng Li, Jun Wang, Zeqiu Li, Jiayin Xu. Catalytic combustion of methane over a highly active and stable NiO/CeO2 catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(4): 534-545.
[4] Guoxing Chen, Marc Widenmeyer, Binjie Tang, Louise Kaeswurm, Ling Wang, Armin Feldhoff, Anke Weidenkaff. A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+d Ruddlesden-Popper membrane for oxygen separation[J]. Front. Chem. Sci. Eng., 2020, 14(3): 405-414.
[5] Daniil Marinov. Kinetic Monte Carlo simulations of plasma-surface reactions on heterogeneous surfaces[J]. Front. Chem. Sci. Eng., 2019, 13(4): 815-822.
[6] Romain Chanson, Remi Dussart, Thomas Tillocher, P. Lefaucheux, Christian Dussarrat, Jean François de Marneffe. Low-k integration: Gas screening for cryogenic etching and plasma damage mitigation[J]. Front. Chem. Sci. Eng., 2019, 13(3): 511-516.
[7] Liangliang Lin, Xintong Ma, Sirui Li, Marly Wouters, Volker Hessel. Plasma-electrochemical synthesis of europium doped cerium oxide nanoparticles[J]. Front. Chem. Sci. Eng., 2019, 13(3): 501-510.
[8] Bin Xu, Toshiro Kaneko, Toshiaki Kato. Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse plasma CVD[J]. Front. Chem. Sci. Eng., 2019, 13(3): 485-492.
[9] Athanasios Smyrnakis, Angelos Zeniou, Kamil Awsiuk, Vassilios Constantoudis, Evangelos Gogolides. A non-lithographic plasma nanoassembly technology for polymeric nanodot and silicon nanopillar fabrication[J]. Front. Chem. Sci. Eng., 2019, 13(3): 475-484.
[10] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[11] Aswathy Vasudevan, Vasyl Shvalya, Aleksander Zidanšek, Uroš Cvelbar. Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: A mini review[J]. Front. Chem. Sci. Eng., 2019, 13(3): 427-443.
[12] Xiuqi Fang, Carles Corbella, Denis B. Zolotukhin, Michael Keidar. Plasma-enabled healing of graphene nano-platelets layer[J]. Front. Chem. Sci. Eng., 2019, 13(2): 350-359.
[13] Rusen Zhou, Renwu Zhou, Xianhui Zhang, Kateryna Bazaka, Kostya (Ken) Ostrikov. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(2): 340-349.
[14] J. Christopher Whitehead. Plasma-catalysis: Is it just a question of scale?[J]. Front. Chem. Sci. Eng., 2019, 13(2): 264-273.
[15] Annemie Bogaerts, Maksudbek Yusupov, Jamoliddin Razzokov, Jonas Van der Paal. Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling[J]. Front. Chem. Sci. Eng., 2019, 13(2): 253-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed