Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2014, Vol. 8 Issue (2) : 179-187    https://doi.org/10.1007/s11705-014-1431-0
RESEARCH ARTICLE
WO3 nanomaterials synthesized via a sol-gel method and calcination for use as a CO gas sensor
Diah SUSANTI1,*(),A.A. Gede Pradnyana DIPUTRA1,Lucky TANANTA1,Hariyati PURWANINGSIH1,George Endri KUSUMA2,Chenhao WANG3,Shaoju SHIH3,Yingsheng HUANG4
1. Department of Materials and Metallurgical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111, Indonesia
2. Department of Mechanical Engineering, Surabaya State Shipbuilding Polytechnic, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111, Indonesia
3. Department of Materials Science and Engineering, National Taiwan University of Science and Technology (NTUST), Taipei 10607, Taiwan, China
4. Department of Electronic Engineering, National Taiwan University of Science and Technology (NTUST), Taipei 10607, Taiwan, China
 Download: PDF(1094 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Carbon monoxide is a poisonous and hazardous gas and sensitive sensor devices are needed to prevent humans from being poisoned by this gas. A CO gas sensor has been prepared from WO3 synthesized by a sol-gel method. The sensor chip was prepared by a spin-coating technique which deposited a thin film of WO3 on an alumina substrate. The chip samples were then calcined at 300, 400, 500 or 600 °C for 1 h. The sensitivities of the different sensor chips for CO gas were determined by comparing the changes in electrical resistance in the absence and presence of 50 ppm of CO gas at 200 °C. The WO3 calcined at 500 °C had the highest sensitivity. The sensitivity of this sensor was also measured at CO concentrations of 100 ppm and 200 ppm and at operating temperatures of 30 and 100 °C. Thermogravimetric analysis of the WO3 calcined at 500 °C indicated that this sample had the highest gas adsorption capacity. This preliminary research has shown that WO3 can serve as a CO gas sensor and that is should be further explored and developed.

Keywords WO3 nanomaterial      sol-gel      calcinations      CO gas sensor      sensitivity     
Corresponding Author(s): Diah SUSANTI   
Issue Date: 22 May 2014
 Cite this article:   
Diah SUSANTI,A.A. Gede Pradnyana DIPUTRA,Lucky TANANTA, et al. WO3 nanomaterials synthesized via a sol-gel method and calcination for use as a CO gas sensor[J]. Front. Chem. Sci. Eng., 2014, 8(2): 179-187.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1431-0
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I2/179
Fig.1  Schematic diagram of the sensor chip arrangement. 1 Alumina substrate, 2 palladium electrode, 3 WO3 film, 4 palladium heating element, 5 connecting wires, 6 small ceramic tube for thermocouple connection
Fig.2  Secondary electron SEM images of WO3 coated on top of alumina wafers after calcination at (a) 300, (b) 400, (c) 500, and (d) 600°C for 1 h
Fig.3  X-ray diffraction patterns of WO3 material after calcination at 300, 400, 500, and 600 °C for 1 h
Calcination temperature /°C300400500600
Crystallite size /nm6.410.921.839.3
BET surface area /(m2·g–1)83.941511.24.51
Tab.1  Crystallite sizes and active surface areas of WO3 powder calcinated at different temperatures
Fig.4  Bright-field TEM images of the WO3 material calcined at 600°C. (a) A WO3 cluster, (b) higher magnification of the square region in (a), (c) and (d) magnified images of the square regions in (b), 1 and 2 respectively
Fig.5  EDX spectra of WO3 taken from the square region in Fig. 4(a)
Fig.6  Raman spectra of WO3 powder calcined at 300, 400, 500, and 600 °C
Fig.7  (a) TGA/DTA of WO3 gel without thermal treatment, (b) TGA of WO3 powder treated at 300 and 400 °C, (c) TGA of WO3 powder treated at 500 °C and 600 °C
Fig.8  (a) Sensitivity of WO3-based chip sensor calcined at 300, 400, 500 and 600 °C, measured at 200 °C and 50 ppm CO; (b) Sensitivity of sensor calcined at 500 °C measured at different operating temperatures: 30, 100 and 200 °C at 50 ppm CO; (c) Sensitivity of sensor calcined at 500 °C measured at different CO gas concentrations: 50, 100 °C and 200 ppm at 200 °C
1 WangS H, ChouT C, LiuC C. Nano-crystalline tungsten oxide NO2 sensor. Sensors and Actuators. B, Chemical, 2003, 94(3): 343-351
doi: 10.1016/S0925-4005(03)00383-6
2 LiuZ, MiyauchiM, YamazakiT, ZhenY. Facile synthesis and NO2 gas sensing of tungsten oxide nanorods assembled microspheres. Sensors and Actuators. B, Chemical, 2009, 140(2): 514-519
doi: 10.1016/j.snb.2009.04.059
3 BoulovaM, GaskovA, LucazeauG. Tungsten oxide reactivity versus CH4, CO and NO2 molecules studied by Raman spectroscopy. Sensors and Actuators. B, Chemical, 2001, 81(1): 99-106
doi: 10.1016/S0925-4005(01)00938-8
4 YanA, XieC, ZengD, CaiS, HuM. Synthesis, formation mechanism and sensing properties of WO3 hydrate nanowire netted-spheres. Materials Research Bulletin, 2010, 45(10): 1541-1547
doi: 10.1016/j.materresbull.2010.05.026
5 KananS M, TrippC P. Synthesis, FTIR studies and sensor properties of WO3 powders. Current Opinion in Solid State and Materials Science, 2007, 11(1-2): 19-27
doi: 10.1016/j.cossms.2007.11.001
6 SuX, LiY, JianJ, WangJ. In situ etching WO3 nanoplates: Hydrothermal synthesis, photoluminescence and gas sensor properties. Materials Research Bulletin, 2010, 45(12): 1960-1963
doi: 10.1016/j.materresbull.2010.08.011
7 DeepaM, SinghP, SharmaS N, AgnihotryS A. Effect of humidity on structure and electrochromic properties of sol-gel-derived tungsten oxide films. Solar Energy Materials and Solar Cells, 2006, 90(16): 2665-2682
doi: 10.1016/j.solmat.2006.02.032
8 OzkanE, LeeS H, LiuP, TracyC E, TepehanF Z, PittsJ R, DebS K. Electrochromic and optical properties of mesoporous tungsten oxide films. Solid State Ionics, 2002, 149(1-2): 139-146
doi: 10.1016/S0167-2738(02)00143-1
9 PyperO, SchollhornR, DonkersJ J T M, KringsL H M. Nanocrystalline structure of WO3 thin Films prepared by the sol-gel technique. Materials Research Bulletin, 1998, 33(7): 1095-1101
doi: 10.1016/S0025-5408(98)00080-4
10 SuL, LuZ. All solid-state smart window of electrodeposited WO3 and TiO2 particulate film with PTREFG gel electrolyte. Journal of Physics and Chemistry of Solids, 1998, 59(8): 1175-1180
doi: 10.1016/S0022-3697(98)00072-9
11 ChangK H, HuC C, HuangC M, LiuY L, ChangC I. Microwave-assisted hydrothermal synthesis of crystalline WO3-WO3?0.5H2O mixtures for pseudocapacitors of the asymmetric type. Journal of Power Sources, 2011, 196(4): 2387-2392
doi: 10.1016/j.jpowsour.2010.09.078
12 GilletM, MasekK, GilletE. Structure of tungsten oxide nanoclusters. Surface Science, 2004, 566-568: 383-389
doi: 10.1016/j.susc.2004.05.075
13 HidayatD, PurwantoA, WangW N, OkuyamaK. Preparation of size-controlled tungsten oxide nanoparticles and evaluation of their adsorption performance. Materials Research Bulletin, 2010, 45(2): 165-173
doi: 10.1016/j.materresbull.2009.09.025
14 HaJ H, MuralidharanP, KimD K. Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts. Journal of Alloys and Compounds, 2009, 475(1-2): 446-451
doi: 10.1016/j.jallcom.2008.07.048
15 RamanaC V, UtsunomiyaS, EwingR C, JulienC M, BeckerU. Structural stability and phase transitions in WO3 thin films. Journal of Physical Chemistry B, 2006, 110(21): 10430-10435
doi: 10.1021/jp056664i pmid: 16722749
16 HouxN L, PourroyG, CamerelF, CometM, SpitzerD. WO3 nanoparticles in the 5-30 nm range by solvothermal synthesis under microwave or resistive heating. Journal of Physical Chemistry B, 2010, 114: 155-161
17 YousB, RobinS, DonnadieuA. Chemical vapor deposition of tungsten oxides: A comparative study by XPS, XRD and RHEED. Materials Research Bulletin, 1984, 19: 1349-1354
doi: 10.1016/0025-5408(84)90199-5
18 PyunS I, KimD J, BaeJ S. Hydrogen transport through r.f. magnetron sputtered amorphous and crystalline WO3 films. Journal of Alloys and Compounds, 1996, 244(1-2): 16-22
doi: 10.1016/S0925-8388(96)02416-4
19 DekiS, BelekeA B, KotaniY, MizuhataM. Synthesis of tungsten oxide thin film by liquid phase deposition. Materials Chemistry and Physics, 2010, 123(2-3): 614-619
doi: 10.1016/j.matchemphys.2010.05.024
20 AbdullahS F, RadimanS, HamidM A A, IbrahimN B. Effect of calcinations temperature on the surface morphology and crystallinity of tungsten (VI) oxide nanorods prepared using colloidal gas aphrons method. Colloids and Surfaces A, 2006, 280: 88-94
doi: 10.1016/j.colsurfa.2006.01.042
21 BrinkerC J, SchererG W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. San Diego, USA: Academic Press. Inc., 1990, 2-6
22 HoG W. Gas sensor with nanostructured oxide semiconductor materials. Science of Advanced Materials, 2011, 3(2): 150-168
doi: 10.1166/sam.2011.1145
23 SusantiD, NugrohoS H, NisfuH, NugrohoE P, PurwaningsihH, KusumaG E, ShihS J. Comparative analysis of WO3 nanomaterial synthesized using a sol-gel method followed by calcination and hydrothermal treatments. Frontiers of Chemical Science and Engineering, 2012, 6(4): 371-380
doi: 10.1007/s11705-012-1215-3
24 CullityB D, StockS R. Elements of X-Ray Diffraction. 3rd ed. New Jersey, USA: Prentice Hall, 2001, 170-172
25 SzilágyiI M, MadarászJ, PokolG, KirályP, TárkányiG, SaukkoS, MizseiJ, TòthA L, SzabòA, Varga-JosepovitsK. Stability and controlled composition of hexagonal WO3. Chemistry of Materials, 2008, 20(12): 4116-4125
doi: 10.1021/cm800668x
26 DanielM F, DesbatB, LasseguesJ C, GerardB, FiglarzM. Infrared and Raman study of WO3 tungsten trioxide and WO3·xH2O tungsten trioxide hydrate. Journal of Solid State Chemistry, 1987, 67(2): 235-247
doi: 10.1016/0022-4596(87)90359-8
27 TamakiJ, ZhangZ, FujimoriK, AkiyamaM, HaradaT, MiuraN, YamazoeN. Grain-size effects in tungsten oxide-based sensor for nitrogen oxides. Journal of the Electrochemical Society, 1994, 141(8): 2207-2210
doi: 10.1149/1.2055088
28 KocembaI, RynkowskiJ. The influence of catalytic activity on the response of Pt/SnO2 gas sensors to carbon monoxide and hydrogen. Sensors and Actuators. B, Chemical, 2011, 155(2): 659-666
doi: 10.1016/j.snb.2011.01.026
[1] Ehsan Rahmani, Mohammad Rahmani. Catalytic process modeling and sensitivity analysis of alkylation of benzene with ethanol over MIL-101(Fe) and MIL-88(Fe)[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1100-1111.
[2] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[3] Nadir Abbas, Godlisten N. Shao, Syed M. Imran, Muhammad S. Haider, Hee Taik Kim. Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse[J]. Front. Chem. Sci. Eng., 2016, 10(3): 405-416.
[4] Diah Susanti, Stefanus Haryo N, Hasnan Nisfu, Eko Prasetio Nugroho, Hariyati Purwaningsih, George Endri Kusuma, Shao-Ju Shih. Comparison of the morphology and structure of WO3 nanomaterials synthesized by a sol-gel method followed by calcination or hydrothermal treatment[J]. Front Chem Sci Eng, 2012, 6(4): 371-380.
[5] Wenjiang LI, Fei XIE, Dongxu HUA, Chunli ZHANG, Chen DAI, Zhenyun YU, Meizhou QI, Shaojun YU. Preparation of P2O5-SiO2 hollow microspheres in the presence of phosphoric acid[J]. Front Chem Sci Eng, 2011, 5(3): 314-317.
[6] Guoqiang ZHANG, Lin GAO, Hongguang JIN, Rumou LIN, Sheng LI. Sensitivity analysis of a methanol and power polygeneration system fueled with coke oven gas and coal gas[J]. Front Chem Eng Chin, 2010, 4(4): 491-497.
[7] ZHANG Liping, ZHU Yi, NI Caihua. Graft copolymerization of -isopropylacrylamide with 3-(methacryloxy)propyl trimethoxysilane on ultrafine silica and its application in chromatography separation[J]. Front. Chem. Sci. Eng., 2008, 2(3): 242-247.
[8] QIAN Qinghua, HU Yuyan, WEN Gaofei, FENG Xin, LU Xiao-hua. Preparation and gaseous photocatalytic activity of smooth potassium dititanate film[J]. Front. Chem. Sci. Eng., 2008, 2(3): 308-314.
[9] QIANG Liangsheng, MA Jing, CHU Jia, ZHANG Xiaohong. Preparation and microstructure analysis of Fe-doped PbTiO ceramic[J]. Front. Chem. Sci. Eng., 2008, 2(2): 140-144.
[10] ZHANG Gaojie, WU Jinming, LIU Shaoguang, YAN Mi. Fabrication of titania thin film with composite nanostructure and its ability to photodegrade rhodamine B in water[J]. Front. Chem. Sci. Eng., 2008, 2(1): 44-48.
[11] FAN Qingming, LIU Yingxin, ZHENG Yifan, YAN Wei. Preparation of Ni/SiO catalyst in ionic liquids for hydrogenation[J]. Front. Chem. Sci. Eng., 2008, 2(1): 63-68.
[12] LIU Yingxin, WEI Zuojun, CHEN Jixiang, ZHANG Jiyan. Effects of preparation methods of support on the properties of nickel catalyst for hydrogenation of m-dinitrobenzene[J]. Front. Chem. Sci. Eng., 2007, 1(3): 287-291.
[13] XIAO Xinyan, ZHANG Huiping, CHEN Huanqin, LIAO Dongliang. Synthesis of TiO2 nano-particles and their photocatalytic activity for formaldehyde and methyl orange degradation[J]. Front. Chem. Sci. Eng., 2007, 1(2): 178-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed