Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2014, Vol. 8 Issue (3) : 295-305    https://doi.org/10.1007/s11705-014-1433-y
RESEARCH ARTICLE
The influence of manufacturing parameters and adding support layer on the properties of Zirfon? separators
Li XU1,2,*(),Yue YU1,2,Wei LI1,2,Yan YOU1,2,Wei XU3,Shaoxing ZHANG3
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China
3. Research and Development Department, Tianjin Mainland Hydrogen Equipment Co., Ltd., Tianjin 301609, China
 Download: PDF(1246 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The composite separator comprising of polysulfone and zirconia was prepared by phase inversion precipitation technique. The influence of manufacturing parameters on its properties was investigated, and the results show that the manufacturing parameters affect the ionic resistance and maximum pore size significantly. A modified composite separator with a support layer was prepared to enhance the tensile strength of separator. By adding support layer, the tensile strength of the separator increases from 1.85 MPa to 13.66 MPa. In order to evaluate the practical applicability of the composite separator, a small-scale industrial electrolytic experiment was conducted to investigate the changes of cell voltage, gas purity and separator stability. The results show that the modified composite separator has a smaller cell voltage and a higher H2 purity than the asbestos separator, and are promising material for industrial hydrogen production.

Keywords separator      alkaline water electrolysis      manufacturing parameters      support layer     
Corresponding Author(s): Li XU   
Online First Date: 11 August 2014    Issue Date: 11 October 2014
 Cite this article:   
Li XU,Yue YU,Wei LI, et al. The influence of manufacturing parameters and adding support layer on the properties of Zirfon? separators[J]. Front. Chem. Sci. Eng., 2014, 8(3): 295-305.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1433-y
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I3/295
Fig.1  Schematic view of the separator resistance testing. 1-separator, 2-luggin capillary, 3-auxiliary electrode, 4-saturation KCI salt bridge, 5-calomel electrode, 6-direct-current power supply, 7-ampere meter, 8-voltmeter
Thickness /μmMaximum pore size /μmIonic resistance/W·cm2Tensile strength /MPaPorosity/%Corrosion resistance /%
1502.360.0281.7081.60.19
3002.560.0691.5680.80.17
4503.550.0741.5479.30.15
6004.480.1131.5179.20.16
Tab.1  The effect of thickness on the properties of ZF separator
Fig.2  SEM cross-section images of composite separator with different thickness: (a) 150 μm, and (b) 450 μm
PSF concentration/wt-%Thickness/μmMaximum pore size/μmIonic resistance/W·cm2Tensile strength/MPaPorosity/%Corrosion resistance/%
104559.120.07961.1892.70.18
124857.560.10141.3489.60.18
155154.210.13751.6882.20.19
205653.510.55003.2866.00.15
Tab.2  The effect of PSF concentration on the properties of ZF separator
Fig.3  SEM cross-section images of composite separator with different PSF concentration: (a) 10%, (b) 15%, and (c) 20%
PVP concentration/(wt-%)Thickness/μmMaximum pore size/μmTensile strength/MPaPorosity/%Impact resistance/%
05620.364.5774.90.32
55600.813.1477.60.40
105643.161.8882.10.46
155583.421.6183.11.21
205623.981.0384.61.92
Tab.3  The effect of PVP concentration on the properties of ZF separator
Fig.4  SEM cross-section images of membrane with different PVP content: (a) 0%, (b) 5%, (c) 10% and (d) 20%
Fig.5  The effect of PVP content on the membrane resistivity
ZrO2 concentration /wt-%Maximum pore size /μmPorosity /%Ionic resistivity/Ω·cmViscosity / mPa·sCorrosion resistance /%Tensile strength /MPa
03.7385.52.1812111.241.72
103.9384.42.1414321.211.70
204.2486.22.2215230.921.68
304.1681.72.1617650.591.66
404.1882.02.0818610.391.67
504.2581.41.9219760.191.52
604.7580.91.9121140.161.55
704.2480.71.9126510.091.27
803.0177.61.836100.021.08
Tab.4  The effect of ZrO2 concentration on the properties of ZF separator
Fig.6  SEM cross-section images of separators with different ZrO2 concentration: (a) 20% and (b) 60%
TypeDensity /g·m-2Thickness /mmMaximum pore size /μm
ZF separator1650.534.0
Separator D3680.8037.6
Tab.5  The maximum pore size comparison between ZF and composite separators
TypeThickness of support layer /mmThickness of composite separator /mmMaximum pore size of composite separator /μm
Separator A0.240.7922.6
Separator B0.290.7832.8
Separator C0.320.7836.4
Separator D0.380.8037.6
Tab.6  The effect of the support layer thickness on the separator properties
TypeTensile strength /MPaIonic resistance /W·cm2Ionic resistivity /W·cmPorosity /%
ZF separator1.850.101.969.0
Separator A5.670.384.868.3
Separator B7.400.384.967.9
Separator C10.770.395.067.2
Separator D13.660.425.267.0
Tab.7  Comparison of the properties between ZF and composite separators
Fig.7  Schematic diagram of the experimental electrolysis apparatus
Fig.8  The cell voltage versus current density using different separators (80 °C; 30 wt-% KOH)
Current density /A·m-2Modified ZF separatorZF separator
H2 purity /% O2 purity /%H2 purity /%O2 purity /%
200099.56099.32599.47599.450
300099.56599.32599.48099.455
400099.53599.30599.51099.460
500099.51099.29099.41599.495
600099.50099.28099.45099.475
Tab.8  The gas purity versus current density using different separators*
Electrolyte time /dayModified ZF separatorZF separator
H2 purity /%O2 purity /%H2 purity/%H2 purity /% O2 purity /%
599.56599.32599.48099.455
1599.56599.20599.49599.345
Tab.9  Gas purity of different separators versus electrolyte time*
1 Albertini L B, Angelo A C D, Gonzalez E R. A nickel molybdenite cathode for the hydrogen evolution reaction in alkaline media. Journal of Applied Electrochemistry, 1992, 22(9): 888-892
2 Rosa V M, Santos M B F, Silva E P. New materials for water electrolysis diaphragms. International Journal of Hydrogen Energy, 1995, 20(9): 697-700
3 Kerres J, Eigenberger G, Reichle S, Schramm V, Hetzel K, Schnurnberger W, Seybold I. Advanced alkaline electrolysis with porous polymeric diaphragms. Desalination, 1996, 104(1-2): 47-57
4 Wendt H, Hofmann H. Cermet diaphragms and integrated electrode-diaphragm units for advanced alkaline water electrolysis. International Journal of Hydrogen Energy, 1985, 10(6): 375-381
5 Divisek J, Mergel J. Improvement of water electrolysis in alkaline media at intermediate temperatures. In: Proceeding of the 3rd world Hydrogen Energy Conference ., Oxford and New York: Pergamon Press, 1981, 209-219
6 Takashi O, Kenjiro T, Katsuyuki T, Katsuhiro A. Nickel oxide water electrolysis diaphragm fabricated by a novel method. International Journal of Hydrogen Energy, 2007, 32(18): 5094-5097
7 Irving L R. Diaphragm for electrolytic and electrochemical cells. US Patent, 4707228, 1986-10-17
8 Lu S F, Zhuang L, Lu J T. Homogeneous blend membrane made of poly(ether sulphone) and poly(vinylpyrrolidone) and its application to water electrolysis. Journal of Membrane Science, 2007, 300(1-2): 205-210
9 Vermeiren P H, Adriansens W, Leysen R. Zirfon?: A new separator for Ni-H2 batteries and alkaline fuel cells. International Journal of Hydrogen Energy, 1996, 21(8): 679-684
10 Vermeiren P H, Adriansens W, Moreels J P, Leysen R. Evaluation of the Zirfon? separator for use in alkaline water electrolysis and Ni-H2 batteries. International Journal of Hydrogen Energy, 1998, 23(5): 321-324
11 Vermeiren P H, Leysen R, Beckers H, Moreels J P, Claes A. beckers H, Moreels JP, Claes A. The influence of manufacturing parameters on the properties of macroporous Zirfon? separators. Journal of Porous Materials, 2008, 15(3): 259-264
12 Wienk I M, Boom R M, Beerlage M A M, Bulte A M W, Smolders C A, Strathmann H. Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. Journal of Membrane Science, 1996, 113(2): 361-371
13 Aleix C, Tania G, Palet C. Membrane thickness and preparation temperature as key parameters for controlling the macrovoid structure of chiral activated membranes (CAM). Journal of Membrane Science, 2007, 287(1): 29-40
14 Paulsen F G, Shojaie S S, Krantz W B. Effect of evaporation step on macrovoid formation in wet-cast polymeric membranes. Journal of Membrane Science, 1994, 91(5): 265-282
15 Stropnik C, Kaiser V, Musil V, Brumen M. Wet-phase-separation membranes from the polysulfone/N,N-dimethylacetamide/water ternary system: The formation and elements of their structureandproperties. Journal of Applied Polymer Science, 2005, 96(5): 1667-1674
16 Sakai T, Takenaka H, Wakabayashi N, Kawami Y, Torikai E. Gas permeation properties of solid polymer electrolyte (SPE) membranes. Journal of the Electrochemical Society, 1985, 132(6): 1328-1332
17 Wang D L, Teo W K, Li K. Preparation and characterization of high-flux polysulfone hollow fibre gas separation membranes. Journal of Membrane Science, 2002, 204(2): 247-256
18 Smolders C A, Reuvers A J, Boom I M, Wienk I M. Microstructures in phase-inversion membranes. Journal of Membrane Science, 1992, 73(2-3): 259-275
19 Vermeiren P H, Moreels J P, Leysen R. Porosity in composite Zirfon? membranes. Journal of Porous Materials, 1996, 3(1): 33-40
20 Xu L, Li W, You Y, Zhang S, Zhao Y. Polysulfone and zirconia composite separators for alkaline water electrolysis. Frontiers of Chemical Science and Engineering, 2013, 7(2): 154-161
[1] Linghui Yu, Jiansong Miao, Yi Jin, Jerry Y.S. Lin. A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries[J]. Front. Chem. Sci. Eng., 2017, 11(3): 346-352.
[2] Li XU, Wei LI, Yan YOU, Shaoxing ZHANG, Yingchun ZHAO. Polysulfone and zirconia composite separators for alkaline water electrolysis[J]. Front Chem Sci Eng, 2013, 7(2): 154-161.
[3] Gujun WAN, Guogang SUN, Cuizhi GAO, Ruiqian DONG, Ying ZHENG, Mingxian SHI. Modeling the gas flow in a cyclone separator at different temperature and pressure[J]. Front Chem Eng Chin, 2010, 4(4): 498-505.
[4] LU Chunxi, LI Ruxin, SHI Mingxian, LIU Xiancheng. Gas-solids separation model of a novel FCC riser terminator device: super short quick separator (SSQS) [J]. Front. Chem. Sci. Eng., 2008, 2(4): 462-467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed