Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2014, Vol. 8 Issue (3) : 378-385    https://doi.org/10.1007/s11705-014-1441-y
RESEARCH ARTICLE
Influences of spinel type and polymeric surfactants on the size evolution of colloidal magnetic nanocrystals (MFe2O4, M= Fe, Mn)
Tahereh R. BASTAMI1,*(),Mohammad H. ENTEZARI2,Chiwai KWONG3,*(),Shizhang QIAO3,*()
1. Department of Chemical Engineering, Quchan University of Advanced Technology, Quchan 94771, Iran
2. Department of Chemistry, Ferdowsi University of Mashhad, Mashhad 91775, Iran
3. School of Chemical Engineering, The University of Adelaide, SA 5005, Australia
 Download: PDF(1149 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two types of polymeric surfactants, PEG300 and PVP40000 , were used for the preparation of magnetic ferrite MFe2O4 (M= Mn, Fe) colloidal nanocrystals using a solvothermal reaction method. The effect of spinel type effect on the size evolution of various nanoparticles was investigated. It was found that Fe3O4 nanoparticles exhibited higher crystalinity and size evolution than MnFe2O4 nanoparticles with use of the two surfactants. It is proposed that this observation is due to fewer tendencies of surfactants on the surface of Fe3O4 building blocks nanoparticles than MnFe2O4. Less amounts of surfactant or capping agent on the surface of nanoparticles lead to the higher crystalibity and larger size. It is also suggested that the type of spinel (normal or inverted spinel) plays a key role on the affinity of the polymeric surfactant on the surface of building blocks.

Keywords spinel type      polymeric surfactant      size evolution      mangnetic ferrite nanoparticle     
Corresponding Author(s): Tahereh R. BASTAMI   
Online First Date: 22 September 2014    Issue Date: 11 October 2014
 Cite this article:   
Tahereh R. BASTAMI,Mohammad H. ENTEZARI,Chiwai KWONG, et al. Influences of spinel type and polymeric surfactants on the size evolution of colloidal magnetic nanocrystals (MFe2O4, M= Fe, Mn)[J]. Front. Chem. Sci. Eng., 2014, 8(3): 378-385.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1441-y
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I3/378
Fig.1  XRD patterns of ferrite nanoparticles with (a) PEG300 and (b) PVP (12 h, 160 °C)
Fig.2  TEM images of (a) magnetite nanoparticle, average size= 165 nm (bar 1000 nm), and (b) manganese ferrite nanoparticles (12 h, 160 °C, PVP; bar 500 nm); histograms 2(c) and 2(d) showing the particle size distribution measured from Figs. 2(a) and 2(b), respectively
Fig.3  TEM images of (a) magnetite nanoparticles, average size= 220 nm (max. 350 nm, min. 115 nm, bar 1000 nm), and (b) manganese ferrite nanoparticles, average size= 180 nm (12 h, 160 °C, PEG300; bar 1000 nm); histograms 3(c) and 3(d) showing the particle size distribution measured from Figs. 3(a) and 3(b), respectively
Fig.4  TEM images of (a) manganese ferrite nanoparticles, average size= 190 nm, and (b) magnetite nanoparticles, average size= 230 nm (12 h, 180 °C, PVP; bar 1000 nm); histograms 4(c) and 4(d) showing the particle size distribution measured from Figs. 4(a) and 4(b), respectively
Fig.5  TEM images of (a) magnetite nanoparticles, average size= 290 nm, and (b) manganese ferrite nanoparticles, average size= 137 nm (72 h, 180 °C, PVP; bar 500 nm); histograms 5(c) and 5(d) showing the particle size distribution measured from Figs. 5(a) and 5(b), respectively
Fig.6  TGA results for the weight loss as a function of temperature for (a) MnFe2O4 , and (b) Fe3O4 nanoparticles
Fig.7  Magnetic hysteresis loops of the magnetic ferrite nanoparticle in room temperature
1 Gupta A K, Curtis A S G. Surface modified superparamagnetic nanoparticles for drug delivery interaction studies with human fibroblasts in culture. Journal of Materials Science. Materials in Medicine, 2004, 15(4): 493–496
2 Hergt R, Hiergeist R, Hilger I, Kaiser W A, Lapatnikov Y, Margel S, Richter U. Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 2004, 270(3): 345–357
3 Johannsen M, Jordan A, Scholz R, Koch M, Lein M, Deger S, Roigas J, Jung K, Loening S. Evaluation of magnetic fluid hyperthermia in a standard rat model of prostate cancer. Journal of Endourology, 2004, 18(5): 495–500
4 Liu T, Liu L, Liu J, Liu S, Qiao S Z. Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore. Frontiers of Chemical Science and Engineering, 2014, 8 (1): 114–122
5 Li G X, Joshi V, White R L, Wang S X, Kemp J T, Webb C, Davis R W, Sun S H. Detection of single micron-sized magnetic bead and magnetic nanoparticles using spin valve sensors for biological applications. Journal of Applied Physics, 2003, 93(10): 7557–7559
6 Zeng H, Li J, Wang Z L, Liu J P, Sun S H. Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles. Nano Letters, 2004, 4(1): 187–190
7 Chaudhuri A, Mandal M, Mandal K. Preparation and study of NiFe2O4/SiO2 core–shell nanocomposites. Journal of Alloys and Compounds, 2009, 487(1–2): 698–702
8 Carta D, Casula M F, Falqui A, Loche D, Mountjoy G, Sangregorio C, Corrias A. A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M = Mn, Co, Ni). Journal of Physical Chemistry C, 2009, 113(20): 8606–8615
9 Sickafus K E, Wills J M, Grimes N W. Structure of spinel. Journal of the American Ceramic Society, 1999, 82(12): 3279–3292
10 Tang Z X, Sorensen C M, Klabunde K J, Hadjipanayis G C. Size-dependent Curie temperature in nanoscale MnFe2O4 particles. Physical Review Letters, 1991, 67(25): 3602–3605
11 Lee J F, Huh Y M, Jun Y M, Seo J W, Jang J T, Song H T, Kim S, Cho E J H G, Yoon J S, Cheon J. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Medicine, 2006, 13(1): 95–99
12 Wang J, Wu Y, Zhu Y. Cation distribution of MnFe2O4 nanoparticles synthesized under an induced magnetic field. International Journal of Modern Physics B, 2007, 21(5): 723–729
13 Cornell R M, Schwertmann U. The iron oxides: Structure, properties, reactions occurrence and uses. 2nd ed. Weinham: Willey-VCH Verlag GmbH & Co., 2003
14 Lattuada M, Hatton T A. Functionalization of monodisperse magnetic nanoparticles. Langmuir, 2007, 23(4): 2158–2168
15 Zhang L, He R, Gu H C. Oleic acid coating on the monodisperse magnetite nanoparticles. Applied Surface Science, 2006, 253(5): 2611–2617
16 Vestal C R, Zhang Z J. Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. Journal of the American Chemical Society, 2003, 125(32): 9828–9833
17 Park J Y, Daksha P, Lee G H, Woo S, Chang Y. Highly water-dispersible PEG surface modified ultra small superparamagnetic iron oxide nanoparticles useful for target-specific biomedical applications. Nanotechnology, 2008, 19(36): 1–7
18 Tromsdorf U I, Bigall N C, Kaul M G, Bruns O T, Nikolic M S, Mollwitz B, Sperling R A, Reimer R, Hohenberg H, Parak W J, F?rster S, Beisiegel U, Adam G, Weller H. Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Letters, 2007, 7(8): 2422–2427
19 Palma R D, Peeters S, Van Bael M J, Van den Rul H, Bonroy K, Laureyn W, Mullens J, Borghs G, Maes G. Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chemistry of Materials, 2007, 19(7): 1821–1831
20 Cheng F Y, Su C H, Yang Y S, Yeh C S, Tsai C Y, Wu C L, Wu M T, Shieh D B. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials, 2005, 26(7): 729–738
21 Deng H, Li X, Peng Q, Wang X, Chen J, Li Y. Monodisperse magnetic single-crystal ferrite microspheres. Angewandte Chemie International Edition, 2005, 44(18): 2782–2785
22 Cullity B D. Elements of X-ray diffraction. Massachusetts: Addison Wesley, 1978
23 Rohani Bastami T, Entezari M H, Hu Q H, Hartono S B, Qiao S Z. Chemical Engineering Journal, 2012, 210: 157–165
24 Zhang J, Wang Y, Zheng J, Huang F, Chen D, Lan Y, Ren G, Lin Z, Wang C. Oriented attachment kinetics for ligand capped nanocrystals: Coarsening of thiol-PbS nanoparticle. Journal of Physical Chemistry B, 2007, 111(6): 1449–1454
25 Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik C N, Markovich G. Alkyl phosphonate/phosphate coating on magnetite nanoparticles: A comparison with fatty acids. Langmuir, 2001, 17(25): 7907–7911
26 Swami A, Kumar A, Sastry M. Formation of water-dispersible gold nanoparticles using a technique based on surface-bound interdigitated bilayers. Langmuir, 2003, 19(4): 1168–1172
27 Zhang L, He R, Gu H C. Oleic acid coating on the monodisperse magnetite nanoparticles. Applied Surface Science, 2006, 253(5): 2611–2617
28 Yee C, Kataby G, Ulman A, Prozorov T, White H, King A, Rafailovich M, Sokolov J, Gedanken A. Self-assembled monolayers of alkanesulfonic and phosphonic acids on amorphous iron oxide nanoparticles. Langmuir, 1999, 15(21): 7111–7115
[1] Supplementary Material Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed