Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2014, Vol. 8 Issue (4) : 405-417    https://doi.org/10.1007/s11705-014-1445-7
REVIEW ARTICLE
Water-soluble BODIPY and aza-BODIPY dyes: synthetic progress and applications
Gang FAN,Le YANG,Zhijian CHEN()
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(1399 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In recent years, boron-dipyrromethene (BODIPY) and boron-azadipyrromethene (aza-BODIPY) dyes have attracted considerable multidisciplinary attention due to their diverse applications. By introducing various hydrophilic groups, such as quaternary ammonium, sulfonate or oligo-ethyleneglycol moieties into the BODIPY core, the solubilities of these dyes in aqueous solution can be greatly improved while maintaining their high fluorescence quantum yields. Accordingly, applying these fluorescent dyes in aqueous systems to areas such as chemosensors, biomacromolecule labeling, bio-imaging and photodynamic therapy has been achieved. In this article, the recent progress on the synthesis, optical properties and application of water-soluble BODIPY dyes and aza-BODIPY dyes is reviewed.

Keywords boron-dipyrromethene      boron-azadipyrromethene      synthetic progress      applications     
Corresponding Author(s): Zhijian CHEN   
Online First Date: 17 November 2014    Issue Date: 14 January 2015
 Cite this article:   
Gang FAN,Le YANG,Zhijian CHEN. Water-soluble BODIPY and aza-BODIPY dyes: synthetic progress and applications[J]. Front. Chem. Sci. Eng., 2014, 8(4): 405-417.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1445-7
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I4/405
1 G?rl D, Zhang X, Würthner F. Molecular assemblies of perylene bisimide dyes in water. Angewandte Chemie International Edition, 2012, 51(26): 6328–6348
2 Loudet A, Burgess K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chemical Reviews, 2007, 107(11): 4891–4932
3 Ziessel R, Ulrich G, Harriman A. The chemistry of bodipy: A new El Dorado for fluorescence tools. New Journal of Chemistry, 2007, 31(4): 496–501
4 Baruah M, Qin W, Vallée R A, Beljonne D, Rohand T, Dehaen W, Boens N. A highly potassium-selective fluorescent indicator based on BODIPY azacrown ether excitable with visible light. Organic Letters, 2005, 7(20): 4377–4380
5 Bricks J L, Kovalchuk A, Trieflinger C, Nofz M, Büschel M, Tolmachev A I, Daub J, Rurack K. On the development of sensor molecules that display FeIII-amplified fluorescence. Journal of the American Chemical Society, 2005, 127(39): 13522–13529
6 Ulrich G, Ziessel R, Harriman A. The chemistry of fluorescent bodipy dyes: Versatility unsurpassed. Angewandte Chemie International Edition, 2008, 47(7): 1184–1201
7 Treibs A, Kreuzer F H. Difluorboryl-komplexe von di- und tripyrrylmethenen. Justus Liebigs Annalen der Chemie, 1968, 718(1): 208–223
8 Qin W W, Baruah M, Stefan A, Auweraer M V, Boens N. Photophysical properties of BODIPY-derived fluorescent pH probes in solution. A European Journal of Chemical Physics and Physical Chemistry, 2005, 6(11): 2343–2351
9 Wagner R W, Lindsey J S. Boron-dipyrromethene dyes for incorporation in synthetic multi-pigment light-harvesting arrays. Pure and Applied Chemistry, 1996, 68(7): 1373–1380
10 Rurack K, Kollmannsberger M, Daub J. Molecular switching in the near infrared (NIR) with a functionalized boron-dipyrromethene dye. Angewandte Chemie International Edition, 2001, 40(2): 385–387
11 Gabe Y, Urano Y, Kikuchi K, Kojima H, Nagano T. Highly sensitive fluorescence probes for nitric oxide. Journal of the American Chemical Society, 2004, 126(10): 3357–3367
12 Guo B, Peng X, Cui A, Wu Y, Tian M, Zhang L, Chen X, Gao Y. Synthesis and spectral properties of new boron dipyrromethene dyes. Dyes and Pigments, 2007, 73(2): 206–210
13 Coskun A, Akkaya E U. Difluorobora-s-diazaindacene dyes as highly selective dosimetric reagents for fluoride anions. Tetrahedron Letters, 2004, 45(25): 4947–4949
14 Nicolaou K C, Claremon D A, Papahatjis D P. A mild method for the synthesis of 2-ketopyrroles from carboxylic acids. Tetrahedron Letters, 1981, 22(46): 4647–4650
15 Wu L, Burgess K. A new synthesis of symmetric boraindacene (BODIPY) dyes. Chemical Communications, 2008, (40): 4933–4935
16 Wories H J, Koek J H, Lodder G, Lugtenburg J, Fokkens R, Driessen O, Mohn G R. A novel water-soluble fluorescent probe: Synthesis, luminescence and biological properties of the sodium salt of the 4-sulfonato-3,3′,5,5′-tetramethyl-2,2′-pyrromethen-1,1′-BF2 complex. Recueil des Travaux Chimiques des Pays-Bas, 1985, 104(11): 288–291
17 Shah M, Thangaraj K, Soong M L, Wolford L T, Boyer J H, Politzer I R, Pavlopoulos T G. Pyrromethene-BF2 complexes as laser dyes: 1. Heteroatom Chemistry, 1990, 1(5): 389–399
18 Li L, Han J Y, Burgess K. Syntheses and spectral properties of functionalized, water-soluble BODIPY derivatives. Journal of Organic Chemistry, 2008, 73(5): 1963–1970
19 Dilek O, Bane S L. Synthesis, spectroscopic properties and protein labeling of water soluble 3,5-disubstituted boron dipyrromethenes. Bioorganic & Medicinal Chemistry Letters, 2009, 19(24): 6911–6913
20 Meltola N J, Wahlroos R, Soini A E. Hydrophilic labeling reagents of dipyrrylmethene-BF2 dyes for two-photon excited fluorometry: Syntheses and photophysical characterization. Journal of Fluorescence, 2004, 14(5): 635–647
21 Niu S L, Ulrich G, Ziessel R, Kiss A, Renard P Y, Romieu A. Water-soluble BODIPY derivatives. Organic Letters, 2009, 11(10): 2049–2052
22 Bura T, Ziessel R. Water-soluble phosphonate-substituted BODIPY derivatives with tunable emission channels. Organic Letters, 2011, 13(12): 3072–3075
23 Zhu S, Zhang J, Vegesna G, Luo F T, Green S, Liu H. Highly water-soluble neutral BODIPY dyes with controllable fluorescence quantum yields. Organic Letters, 2011, 13(3): 438–441
24 Komatsu T, Urano Y, Fujikawa Y, Kobayashi T, Kojima H, Terai T, Hanaoka K, Nagano T. Development of 2,6-carboxy-substituted boron dipyrromethene (BODIPY) as a novel scaffold of ratiometric fluorescent probes for live cell imaging. Chemical Communications, 2009, 45(45): 7015–7017
25 Matsui A, Umezawa K, Shindo Y, Fujii T, Citterio D, Oka K, Suzuki K. A near-infrared fluorescent calcium probe: A new tool for intracellular multicolour Ca2+ imaging. Chemical Communications, 2011, 47(37): 10407–10409
26 Dodani S C, He Q, Chang C J. A turn-on fluorescent sensor for detecting nickel in living cells. Journal of the American Chemical Society, 2009, 131(50): 18020–18021
27 Han J, Loudet A, Barhoumi R, Burghardt R C, Burgess K. A ratiometric pH reporter for imaging protein-dye conjugates in living cells. Journal of the American Chemical Society, 2009, 131(5): 1642–1643
28 Zhu S, Zhang J, Vegesna G, Luo F T, Green S, Liu H. Highly water-soluble neutral BODIPY dyes with controllable fluorescence quantum yields. Organic Letters, 2011, 13(3): 438–441
29 Atilgan S, Ekmekci Z, Dogan A L, Guc D, Akkaya E U. Water soluble distyryl-boradiazaindacenes as efficient photosensitizers for photodynamic therapy. Chemical Communications, 2006, (42): 4398–4400
30 Isik M, Ozdemir T, Turan I S, Kolemen S, Akkaya E U. Chromogenic and fluorogenic sensing of biological thiols in aqueous solutions using BOIDIPY-based reagents. Organic Letters, 2013, 15(1): 216–219
31 Atilgan S, Ozdemir T, Akkaya E U. A sensitive and selective ratiometric near IR fluorescent probe for zinc ions based on the distyryl-bodipy fluorophore. Organic Letters, 2008, 10(18): 4065–4067
32 O’Shea D F. Fluorescent near infra-red (NIR) dyes. US Patent, 20120232282, 2012-09-13
33 McDonnell S O, Hall M J, Allen L T, Byrne A, Gallagher W M, O'Shea D F. Supramolecular photonic therapeutic agents. Journal of the American Chemical Society, 2005, 127(47): 16360–16361
34 Gorman A, Killoran J, O’Shea C, Kenna T, Gallagher W M, O’Shea D F. In vitro demonstration of the heavy-atom effect for photodynamic therapy. Journal of the American Chemical Society, 2004, 126(34): 10619–10631
35 Li F, Yang S I, Ciringh Y, Seth J, Martin C H, Singh D L, Kim D, Birge R R, Bocian D F, Holten D, Lindsey J S. Design, synthesis, and photodynamics of light-harvesting arrays comprised of a porphyrin and one, two, or eight boron-dipyrrin accessory pigments. Journal of the American Chemical Society, 1998, 120(39): 10001–10017
36 Zhang X F, Yu H, Xiao Y. Replacing phenyl ring with thiophene: An approach to longer wavelength aza-dipyrromethene boron difluoride (aza-BODIPY) dyes. Journal of Organic Chemistry, 2012, 77(1): 669–673
37 Amin A N, El-Khouly M, Subbaiyan N K, Zandler M E, Supur M, Fukuzumi S, D’Souza F. Syntheses, electrochemistry, and photodynamics of ferrocene azadipyrromethane donor Acceptor Dyads and Triads. Journal of Physical Chemistry A, 2011, 115(35): 9810–9819
38 Sauer R, Turshatov A, Baluschev S, Landfester K. One-Pot production of fluorescent surface-labeled polymeric nanoparticles via miniemulsion polymerization with Bodipy surfmers. Macromolecules, 2012, 45(9): 3787–3796
39 Poirel A, Retailleau P, Nicola A D, Ziessel R. Synthesis of water-soluble red-emitting thienyl-BODIPYs and bovine serum albumin labeling. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(5): 1252–1257
40 Monsma F J, Barton A C, Kang H C, Brassard D L, Haugland R P, Sibley D R. Characterization of novel fluorescent ligands with high affinity for D1 and D2 dopaminergic receptors. Journal of Neurochemistry, 1989, 52(5): 1641–1644
41 Pagano R E, Martin O C, Kang H C, Haughland R P. A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. Journal of Cell Biology, 1991, 113(6): 1267–1279
42 Knaus H G, Moshammer T, Friedrich K, Kang H C, Haugland R P, Glossman H. In vivo labeling of L-type Ca2<?A3B2 h=-0.3h?>+ channels by fluorescent dihydropyridines: Evidence for a functional, extracellular heparin-binding site. Proceeding of the National Academy of Science of the United States of America, 1992, 89(8): 3586–3590
43 Olivier J H, Widmaier J, Ziessel R. Near-infrared fluorescent nanoparticles formed by self-assembly of lipidic (bodipy) dyes. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(42): 11709–11714
44 Isaad J, Achari A E. A water soluble fluorescent BODIPY dye with azathiacrown ether functionality for mercury chemosensing in environmental media. Analyst (London), 2013, 138(13): 3809–3819
45 Xu J, Li Q, Yue Y, Guo Y, Shao S. A water-soluble BODIPY derivative as a highly selective “Turn-On” fluorescent sensor for H2O2 sensing in vivo. Biosensors & Bioelectronics, 2014, 56: 58–63
46 Zhu S, Zhang J, Janjanam J, Vegesna G, Luo F T, Tiwari A, Liu H. Highly water-soluble BODIPY-based fluorescent probes for sensitive fluorescent sensing of zinc(II). Journal of Materials Chemistry B, 2013, 1(12): 1722–1728
47 Bonnet R. Chemical Aspects of Photodynamic Therapy. Amsterdam: Gordon and Breach Science Publishers, 2000, 115–147
48 Bonnet R, Martínez G. Photobleaching of sensitisers used in photodynamic therapy. Tetrahedron, 2001, 57(47): 9513–9547
49 Capella M A, Capella L S. A light in multidrug resistance: Photodynamic treatment of multidrug-resistant tumors. Journal of Biomedical Science, 2003, 10(4): 361–366
50 Kamkaew A, Lim S H, Lee H B, Kiew L V, Chung L Y, Burgess K. BODIPY dyes in photodynamic therapy. Chemical Society Reviews, 2013, 42(1): 77–88
[1] Mostafa R. Shirdar, Nasim Farajpour, Reza Shahbazian-Yassar, Tolou Shokuhfar. Nanocomposite materials in orthopedic applications[J]. Front. Chem. Sci. Eng., 2019, 13(1): 1-13.
[2] Yanni WU, Shijun LIAO. Review of SO42-/MxOy solid superacid catalysts[J]. Front Chem Eng Chin, 2009, 3(3): 330-343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed