Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (1) : 33-39    https://doi.org/10.1007/s11705-014-1446-6
RESEARCH ARTICLE
Enhanced methanation stability of nano-sized MoS2 catalysts by adding Al2O3
Zhenhua LI,Jia HE,Haiyang WANG,Baowei WANG,Xinbin MA()
Key Lab for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(820 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A series of unsupported MoS2 catalysts with or without Al2O3 modification was prepared using a modified thermal decomposition approach. The catalysts were tested for the methanation of carbon monoxide and the optimum one has 25.6 wt-% Al2O3 content. The catalysts were characterized by nitrogen adsorption measurement, X-ray diffraction and transmission electron microscopy. The results show that adding appropriate amount of Al2O3 increases the dispersion of MoS2, and the increased interaction force between MoS2 and Al2O3 can inhibit the sintering of active MoS2 to some extent.

Keywords unsupported catalyst      molybdenum sulfide      stability      alumina      methanation     
Corresponding Author(s): Xinbin MA   
Online First Date: 17 November 2014    Issue Date: 07 April 2015
 Cite this article:   
Zhenhua LI,Jia HE,Haiyang WANG, et al. Enhanced methanation stability of nano-sized MoS2 catalysts by adding Al2O3[J]. Front. Chem. Sci. Eng., 2015, 9(1): 33-39.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1446-6
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I1/33
Fig.1  Effect of Al2O3 contents on the methanation performance of MoS2 catalysts
Sample Surface area /(m2·g-1) Pore volume /(cm3·g-1) Average pore diameter /nm
Fresh Used Fresh Used Fresh Used
Mo-Al/0 45.9 39.8 0.078 0.060 4.56 4.69
Mo-Al/12.8 63.3 60.4 0.105 0.090 5.03 5.06
Mo-Al/25.6 70.9 70.4 0.103 0.098 4.85 5.15
Mo-Al/38.4 90.6 86.1 0.125 0.105 4.72 5.33
Mo-Al/64 118.8 102.6 0.144 0.098 4.64 5.48
Tab.1  Textural property of fresh and used Mo-Al/x catalysts (x = 0, 12.8, 25.6, 38.4 and 64)
Fig.2  X-ray diffraction patterns of the fresh catalysts
Fig.3  X-ray diffraction patterns of the fresh and used Mo-Al/x (x =0, 25.6, and 64) catalysts
Sample d(002) /nm XS a)
Fresh Used Fresh Used
Mo-Al/0 9.88 10.46 101 112
Mo-Al/12.8 9.02 9.74 92 99
Mo-Al/25.6 8.90 9.69 91 99
Mo-Al/38.4 8.76 9.68 89 99
Mo-Al/64 8.26 9.97 84 102
Tab.2  Crystallinity of MoS2 in the Mo-Al/x catalysts
Fig.4  High resolution TEM images of the fresh (1) and used (2) catalysts. (a): Mo-Al/0; (b): Mo-Al/25.6; (c): Mo-Al/64
Fig.5  The stacking distribution of catalysts
Fig.6  The slab length distribution of catalysts
1 Zhang H, Dong Y Y, Fang W P, Lian Y X. Effects of composite oxide supports on catalytic performance of Ni-based catalysts for CO methanation. Chinese Journal of Catalysis, 2013, 34(2): 330–335
2 Kopyscinski J, Schildhauer T J, Biollaz S M. Production of synthetic natural gas (SNG) from coal and dry biomass—A technology review from 1950 to 2009. Fuel, 2010, 89(8): 1763–1783
3 Turner J A. Sustainable hydrogen production. Science, 2004, 305(5686): 972–974
4 Galletti C, Specchia S, Specchia V. CO selective methanation in H2-rich gas for fuel cell application: Microchannel reactor performance with Ru-based catalysts. Chemical Engineering Journal, 2011, 167(2–3): 616–621
5 Bajusz J G, Kwik D J, Goodwin J G Jr. Methanation on K+-modified Pt/SiO2: The impact of reaction conditions on the effective role of the promoter. Catalysis Letters, 1997, 48(3–4): 151–157
6 Liu B, Ji S F. Comparative study of fluidized-bed and fixed-bed reactor for syngas methanation over Ni-W/TiO2-SiO2 catalyst. Journal of Energy Chemistry, 2013, 22(5): 740–746
7 Gulková D, Kaluěa L, Vít Z, Zdra?il M. Preparation of MoO3/MgO catalysts with eggshell and uniform Mo distribution by methanol assisted spreading: Effect of MoO3 dispersion on rate of spreading. Catalysis Communications, 2006, 7(5): 276–280
8 Vít Z, Gulkově D, Kaluěa L, Zdra?il M. Synergetic effects of Pt and Ru added to Mo/Al2O3 sulfide catalyst in simultaneous hydrodesulfurization of thiophene and hydrogenation of cyclohexene. Journal of Catalysis, 2005, 232(2): 447–455
9 Happel J, Yoshikiyo M, Yin F, Otarod M, Cheh H Y, Hnatow M A, Bajars L, Meyer H S. Isotopic assessment of methanation over molybdenum sulfide catalysts, industry engineering chemistry. Product Research and Development, 1986, 25(2): 214–219
10 Koizumi N, Bian G Z, Murai K, Ozaki T, Yamada M. In situ DRIFT studies of sulfided K-Mo/γ-Al2O3 catalysts. Journal of Molecular Catalysis A Chemical, 2004, 207(2): 173–182
11 Raybaud P, Hafner J, Kresse G, Kasztelan S, Toulhoat H. Structure, energetics, and electronic properties of the surface of a promoted MoS2 catalyst: An ab initio local density functional study. Journal of Catalysis, 2000, 189(1): 129–146
12 Meyer H S, Hill V L, Flowers A, Happel J, Hnatow M A. Direct methanation—A new method of converting synthesis gas to substitute natural gas. Preprint Papers-American Chemical Society. Division of Fuel Chemistry, 1982, 27(1): 109–115
13 Korányi T I, Manninger I, Paál Z, Marks O, Günter T R. Activation of unsupported Co-Mo catalysts in thiophene hydrodesulfurization. Journal of Catalysis, 1989, 116(2): 422–439
14 Nogueiraa A, Znaiguiaa R, Uziob D, Afanasieva P, Berhaulta G. Curved nanostructures of unsupported and Al2O3-supported MoS2 catalysts: Synthesis and HDS catalytic properties. Applied Catalysis A, General, 2012, 429–430: 92–105
15 Du K, Fu W Y, Wei R H, Yang H B, Liu S K, Yu S D, Zhou G T. Synthesis of inorganic fullerene-like MoS2 nanoparticles by a facile method. Materials Letters, 2007, 61(27): 4887–4889
16 Peng Y Y, Meng Z Y, Zhong C, Lu J, Yu W C, Yang Z P, Qian Y T. Hydrothermal synthesis of MoS2 and its pressure-related crystallization. Journal of Solid State Chemistry, 2011, 159(1): 170–173
17 Devers E, Afanasiev P, Jouguet B, Vrinat M. Hydrothermal syntheses and catalytic properties of dispersed molybdenum sulfides. Catalysis Letters, 2002, 82(1–2): 13–17
18 Yu D B, Feng Y, Zhu Y F, Zhang X B, Liu H Q. Template synthesis and characterization of molybdenum disulfide nanotubes. Materials Research Bulletin, 2011, 46(9): 1504–1509
19 Koh J H, Cho A, Lee S, Moon S H. Properties of unsupported MoS2 species produced in the preparation of MoS2/Al2O3 using a sonochemical method. Korean Journal of Chemical Engineering, 2009, 26(4): 999–1003
20 Fuentes S, Diaz G, Pedraza F, Rojas H, Rosas N. The influence of a new preparation method on the catalytic properties of CoMo and NiMo sulfides. Journal of Catalysis, 1988, 113(2): 535–539
21 Inamura K, Prins R. The role of Co in unsupported Co-Mo sulfides in the hydrodesulfurization of thiophene. Journal of Catalysis, 1994, 147(2): 515–524
22 Bezverkhyy I, Afanasiev P, Geantet C, Lacroix M. Highly active (Co)MoS2/Al2O3 hydrodesulfurization catalysts prepared in aqueous solution. Journal of Catalysis, 2001, 204(2): 495–497
23 Berhault G, Mehta A, Pavel A C, Yang J Z, Rendon L, Yácaman M J, Araiza L C, Moller A D, Chianelli R R. The role of structural carbon in transition metal sulfides hydrotreating catalysts. Journal of Catalysis, 2001, 198(1): 9–19
24 Tran M N, Pramana P D, Lee S S. In situ photo-assisted deposition of MoS2 electro-catalyst onto zinc cadmium sulphide nanoparticle surfaces to construct an efficient photocatalyst for hydrogen generation. Nanoscale, 2013, 5(4): 1479–1482
25 Altavilla C, Sarno M, Ciambelli P, Senatore A, Petrone V. New ‘chimie douce’ approach to the synthesis of hybrid nanosheets of MoS2 on CNT and their anti-friction and anti-wear properties. Nanotechnology, 2013, 24(12): 125601–125612
26 Muller A, Diemann E, Branding A, Baumann F W, Breysse M, Vrinat M. New method for the preparation of hydrodesulphurization catalysts: Use of the molybdenum sulphur cluster compound (NH4)2Mo3S(S2)6. Applied Catalysis, 1990, 62(1): 13–17
27 Liu J, Wang E D, Lv J, Li Z H, Wang B W, Ma X B, Qin S D, Sun Q. Investigation of sulfur-resistant, highly active unsupported MoS2 catalysts for synthetic natural gas production from CO methanation. Fuel Processing Technology, 2013, 110: 249–257
28 Calais C, Matsubayashi N, Geantet C, Yoshimura Y, Shimada H, Nishijima A, Lacroix M, Breysse M. Crystallite size determination of highly dispersed unsupported MoS2 catalysts. Journal of Catalysis, 1998, 174(2): 130–141
[1] Mehraneh Ghavami, Mostafa Aghbolaghy, Jafar Soltan, Ning Chen. Room temperature oxidation of acetone by ozone over alumina-supported manganese and cobalt mixed oxides[J]. Front. Chem. Sci. Eng., 2020, 14(6): 937-947.
[2] Pavlo I. Kyriienko. Selective catalytic reduction of NOx with ethanol and other C1-4 oxygenates over Ag/Al2O3 catalysts: A review[J]. Front. Chem. Sci. Eng., 2020, 14(4): 471-491.
[3] Rongxin Zhang, Peinan Zhong, Hamidreza Arandiyan, Yanan Guan, Jinmin Liu, Na Wang, Yilai Jiao, Xiaolei Fan. Using ultrasound to improve the sequential post-synthesis modification method for making mesoporous Y zeolites[J]. Front. Chem. Sci. Eng., 2020, 14(2): 275-287.
[4] Feng Qi, Jie Wu, Hao Li, Guanghui Ma. Recent research and development of PLGA/PLA microspheres/nanoparticles: A review in scientific and industrial aspects[J]. Front. Chem. Sci. Eng., 2019, 13(1): 14-27.
[5] Hanaâ Er-rbib, Nouaamane Kezibri, Chakib Bouallou. Performance assessment of a power-to-gas process based on reversible solid oxide cell[J]. Front. Chem. Sci. Eng., 2018, 12(4): 697-707.
[6] Jiaojiao Shang, Guo Yao, Ronghui Guo, Wei Zheng, Long Gu, Jianwu Lan. Synthesis and characterization of biodegradable thermoplastic elastomers derived from N′,N-bis (2-carboxyethyl)-pyromellitimide, poly(butylene succinate) and polyethylene glycol[J]. Front. Chem. Sci. Eng., 2018, 12(3): 457-466.
[7] Cunyao Li, Wenlong Wang, Li Yan, Yunjie Ding. A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts[J]. Front. Chem. Sci. Eng., 2018, 12(1): 113-123.
[8] Honggui Tang, Shuangshuang Li, Dandan Gong, Yi Guan, Yuan Liu. Bimetallic Ni-Fe catalysts derived from layered double hydroxides for CO methanation from syngas[J]. Front. Chem. Sci. Eng., 2017, 11(4): 613-623.
[9] Junbo Gong, Dejiang Zhang, Yuanyuan Ran, Keke Zhang, Shichao Du. Solvates and polymorphs of clindamycin phosphate: Structural, thermal stability and moisture stability studies[J]. Front. Chem. Sci. Eng., 2017, 11(2): 220-230.
[10] Kechao Zhao,Zhenhua Li,Li Bian. CO2 methanation and co-methanation of CO and CO2 over Mn-promoted Ni/Al2O3 catalysts[J]. Front. Chem. Sci. Eng., 2016, 10(2): 273-280.
[11] Yanhui Liu,Biqiang Chen,Zheng Wang,Luo Liu,Tianwei Tan. Functional characterization of a thermostable methionine adenosyltransferase from Thermus thermophilus HB27[J]. Front. Chem. Sci. Eng., 2016, 10(2): 238-244.
[12] Nadeen Al-Janabi,Abdullatif Alfutimie,Flor R. Siperstein,Xiaolei Fan. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework[J]. Front. Chem. Sci. Eng., 2016, 10(1): 103-107.
[13] Zhenhao Wei,Tengfei Xia,Minghui Liu,Qingsheng Cao,Yarong Xu,Kake Zhu,Xuedong Zhu. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration[J]. Front. Chem. Sci. Eng., 2015, 9(4): 450-460.
[14] Yixiu WANG,Chao LI,Fanchao MENG,Shuling LV,Jintao GUO,Xiaoqin LIU,Chongqing WANG,Zhengfei MA. CuAlCl4 doped MIL-101 as a high capacity CO adsorbent with selectivity over N2[J]. Front. Chem. Sci. Eng., 2014, 8(3): 340-345.
[15] Xiaokai SONG,Zhongyi JIANG,Lin LI,Hong WU. Immobilization of β-glucuronidase in lysozyme-induced biosilica particles to improve its stability[J]. Front. Chem. Sci. Eng., 2014, 8(3): 353-361.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed