Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (1) : 46-56    https://doi.org/10.1007/s11705-015-1506-6
RESEARCH ARTICLE
Synthesis, molecular docking and antibacterial evaluation of 2-(4-(4-aminophenylsulfonyl)phenylamino)-3-(thiophen-2-ylthio)naphthalene-1,4-dione derivatives
Palanisamy RAVICHANDIRAN1,Dhanaraj PREMNATH2,Samuel VASANTHKUMAR1,*()
1. Department of Chemistry, School of Science & Humanities, Karunya University, Coimbatore-641 114, India
2. Department of Bioinformatics, School of Biotechnology and Health sciences, Karunya University, Coimbatore-641 114, India
 Download: PDF(608 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A new series of 2-(4-(4-aminophenylsulfonyl)phenylamino)-3-(thiophen-2-ylthio)naphthalene-1,4-dione derivatives (3a-3n) were synthesized and characterized by spectral techniques. To understand the interaction of binding sites with bacterial protein receptor, the docking study was performed by the GLIDE program and compound N-(4-(4-(1,4-dioxo-3-(thiophen-2-ylthio)-1,4-dihydronaphthalen-2-ylamino)phenylsulfonyl)phenyl)-3-methylbenzamide (3b) exhibited good glide and E model scores of ?5.89 and ?94.90, respectively. Moreover among all the molecules studied including the standards used, namely Sparfloxacin (4.8 μg/mL) and Norfloxacin (no inhibition observed) for their antibacterial property, compound N-(4-(4-(1,4-dioxo-3-(thiophen-2-ylthio)-1,4-dihydronaphthalen-2-ylamino)phenylsulfonyl)phenyl)-4-nitrobenzamide (3e) exhibited the lowest minimum inhibitory concentration (MIC) value of 1.3 μg/mL against Proteus vulgaris.

Keywords MIC      2-thiophene thiol      water as solvent      acid chlorides      sulfone     
Corresponding Author(s): Samuel VASANTHKUMAR   
Issue Date: 07 April 2015
 Cite this article:   
Palanisamy RAVICHANDIRAN,Dhanaraj PREMNATH,Samuel VASANTHKUMAR. Synthesis, molecular docking and antibacterial evaluation of 2-(4-(4-aminophenylsulfonyl)phenylamino)-3-(thiophen-2-ylthio)naphthalene-1,4-dione derivatives[J]. Front. Chem. Sci. Eng., 2015, 9(1): 46-56.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1506-6
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I1/46
Fig.1  
Fig.2  Leading anticancer agents (I, II, III) possessing 1,4-naphthoquinone moiety as the core
Compounds Glide score (BS) E model score /(kcal·mol?1) No. of Hydrogen bonds interactions (BS) MIC of BS /(μg·mL?1) Glide score /PV E model score /(kcal·mol?1) No. of Hydrogen bonding interactions /PV MIC of PV /(μg·mL?1)
1 –4.65 –61.47 2 (ASP 269, ASP212) 1.4 –3.32 –53.12 4 (ARG 500, TYR 508, ASN 276, ASN 447) *
2 –4.52 –76.23 2 (GLN 63, HIS 180) 3.7 –4.25 –57.66 2 (ASN 447, ASN 564) *
3a –1.97 –92.62 3 (ASN 273, GLN 208, LYS 179) 13.7 –2.49 –70.68 3 (GLY 507, TYR 508, ASN 564) 4.9
3b –5.89 –94.90 1 (GLN 63) 4.7 –3.52 –62.27 3 (HIS 389, HIP 501, ARG 560) 4.1
3c –5.16 –89.96 1 (GLN 63) 6.9 –3.62 –74.61 2 (GLY 507, ARG 500) 2.9
3d –5.77 –92.78 1 (GLN 63) 8.1 –3.85 –75.15 3 (GLY 507, ARG 560, LYS 657) 3.7
3e –5.59 –98.86 1 (GLN 63) 7.6 –3.66 –72.88 1 (TYR 655) 1.3
3f –4.29 –87.97 1 (ASP 269) 13 –3.12 –78.69 3 (GLY 507, HIP 501, ARG 500) *
3g –5.45 –89.58 2 (GLN 63, HIE 268) 7.8 –3.68 –63.74 3 (TYR 508, ASP 442, SER 431) 14
3h –5.66 –97.40 2 (GLN 63, HIE 268) 8.1 –3.92 –62.30 3 (GLY 507, ASN 276, TYR 508) *
3i –5.66 –97.40 1 (GLN 63) 14.2 –4.07 –70.67 2 (ASN 276, TYR 508) 3.5
3j –5.24 –97.76 2 (LYS 179, GLN 63) 8.9 –3.70 –70.44 1 (TYR 655) 39
3k –4.13 –88.26 1 (LYS 179) 19.3 –4.09 –54.24 3 (GLY 507, ASN 276, TYR 508) 3.4
3l –5.37 –65.56 0 8.3 –3.55 –70.06 1 (THR 713) 4.0
3m –5.23 –99.16 1 (GLN 63) 8.6 –4.70 –76.15 2 (GLY 507, ARG 500) 12.4
3n –5.85 –99.07 1 (GLN 63) 9.2 –4.25 –76.33 1 (THR 713) 2.7
Sparfloxacina) –2.57 –44.26 1 (GLN F: 7) 9.76 –3.35 –29.52 2 (ASP 444, ASN 447) 4.8
Norfloxacina) –2.99 –35.43 1 (ASN B: 40) * –3.64 –40.24 2 (TYR 508, ASN 276) *
Tab.1  Molecular docking studies of sixteen analogues taken for study with Bacillus subtilis (BS) (PDB ID: 3HSB) and Proteus vulgaris (PV) (PDP ID 1HN0)
Compounds B. subtilis S. aureus E. coli P. vulgaris S. typhi P. aeruginosa K. pneumoniae
1 1.4 34 762 * * 99.2 1015
2 3.7 23.1 156.9 * 633 56.7 789.6
3a 13.7 24.7 982 4.9 * 146.2 947.3
3b 4.7 28.4 137.2 4.1 * 34.6 768.5
3c 6.9 3.7 123.6 2.9 987 32 672.1
3d 8.1 32.4 89 3.7 672.7 41 892.1
3e 7.6 41.5 612.3 1.3 721 37.8 782
3f 13 2.4 152.3 * 873 78.2 *
3g 7.8 3.4 532.1 14 * 126.3 694.7
3h 8.1 3.9 65 * 491.3 * 891.4
3i 14.2 13.2 562 3.5 178.9 89.2 1700.7
3j 8.9 41 102 39 561.6 24.3 892.4
3k 19.3 62.6 786 3.4 578 45.7 492
3l 8.3 3.7 134.8 4.0 659 157 822.5
3m 8.6 39 87 12.4 498.1 21 *
3n 9.2 4.6 472.3 2.7 563.9 28 721.3
Sparfloxacinb) 9.76 4.87 156.3 4.8 2500 156.3 2500
Norfloxacinb) * 39.06 625 * 627 39.06 <1.2
Tab.2  In vitro antibacterial activity of synthesized compounds against Gram-positive and Gram-negative bacteria (MICa) in μg/mL)
Fig.3  Scheme 1 Synthesis of compounds 1, 2, and 3a-3n
Fig.4  Docking model structures of compound 3e into the ymaH binding pocket
Fig.5  Docking model structures of compound 3b into the ymaH binding pocket
Fig.6  Docking model structures of compound 3a into the ymaH binding pocket
1 Hussain H, Krohn K, Ahmad V U, Miana G A, Green I R. Lapachol: An overview. ARKIVOC, 2007, 2007(2): 145–171
2 Tandon V K, Maurya H K, Tripathi A, Keshava G B S, Shukla P K, Srivastava P, Panda D. 2,3-Disubstituted-1,4-naphthoquinones, 12H-benzo[b]phenothiazine-6,11-diones and related compounds: Synthesis and biological evaluation as potential antiproliferative and antifungal agents. European Journal of Medicinal Chemistry, 2009, 44(3): 1086–1092
3 Liu K C, Li J, Sakya S. Mini Reviews in Medicinal Chemistry, 2004, 4(10): 1105–1125
4 Pe’rez-Sacau E, Este’vez-Braun A, Ravelo A G, Ferro E A, Tokuda H, Mukainaka T, Nishino H. Inhibitory effects of lapachol derivatives on epstein-barr virus activation. Bioorganic & Medicinal Chemistry, 2003, 11(4): 483–488
5 Silva T M S, Camara C S, Barbosa T P, Soares A Z, Cunha L C, Pinto A C, Vargas M D. Molluscicidal activity of synthetic lapachol amino and hydrogenated derivatives. Bioorganic & Medicinal Chemistry, 2005, 13(1): 193–196
6 Lien J C, Huang L J, Wang J P, Teng C M, Lee K H, Kuo S C. Synthesis and antiplatelet, antiinflammatory and antiallergic activities of 2,3-Disubstituted 1,4-Naphthoquinones. Chemical & Pharmaceutical Bulletin, 1996, 44(6): 1181–1187
7 Biot C, Bauer H, Schirmer R H, Charret E D. 5-Substituted tetrazoles as bioisosteres of carboxylic acids. Bioisosterism and mechanistic studies on glutathione reductase inhibitors as antimalarials. Journal of Medicinal Chemistry, 2004, 47(24): 5972–5983
8 Mantyla A, Rautio J T G, Nevalainen T, Vepsalainen J, Koskinen A, Croft S I, Jarvinen T. Synthesis, in vitro evaluation, and antileishmanial activity of water-soluble prodrugs of buparvaquone. Journal of Medicinal Chemistry, 2004, 47(1): 188–195
9 Tandon V K, Yadav D B, Singh R V, Chaturvedi A K, Shukla P K. Synthesis and biological evaluation of novel (l)-α-amino acid methyl ester, heteroalkyl, and aryl substituted 1,4-naphthoquinone derivatives as antifungal and antibacterial agents. Bioorganic & Medicinal Chemistry Letters, 2005, 15(23): 5324–5328
10 Tandon V K, Yadav D B, Maurya H K, Chaturvedi A K, Shukla P K. Design, synthesis, and biological evaluation of 1,2,3-trisubstituted-1,4-dihydrobenzo[g]quinoxaline-5,10-diones and related compounds as antifungal and antibacterial agents. Bioorganic & Medicinal Chemistry, 2006, 14(17): 6120–6126
11 Shchekotikhin A E, Buyanov V N, Preobrazhenskaya M N. Synthesis of 1-(ω-aminoalkyl)naphthoindolediones with antiproliferative properties. Bioorganic & Medicinal Chemistry, 2004, 12(14): 3923–3930
12 Ravichandiran P, Jegan A, Premnath D, Periyasamy V S, Muthusubramanian S, Vasanthkumar S. Synthesis, molecular docking and cytotoxicity evaluation of novel 2-(4-amino-benzosulfonyl)-5H-benzo[b]carbazole-6,11-dione derivatives as histone deacetylase (HDAC8) inhibitors. Bioorganic Chemistry, 2014, 53: 24–36
13 Ravichandiran P, Kannan R, Ramasubbu A, Muthusubramanian S, Samuel V K. Green synthesis of 1,4-quinone derivatives and evaluation of their fluorescent and electro chemical properties. Journal of Saudi Chemical Society, 2012
https://doi.org/10.1016/j.jscs.2012.09.011
14 Carroll F I, Dudley K H, Miller H W. Preparation of some sulfonamide and diaminodiphenyl sulfone analogs of 1,4-naphthoquinone. Journal of Medicinal Chemistry, 1969, 12(1): 187–189
15 Someya T, Baba S, Fujimoto M, Kawai G, Kumasaka T, Nakamura K. Crystal structure of ymaH (Hfq) from Bacillus subtilis in complex with an RNA aptamer. Nucleic Acids Research, 2012, 40(4): 1856–1867
16 Huang W, Lunin V V, Li Y, Suzuki S, Sugiura N, Miyazono H, Cygler M. Crystal structure of chondroitin ABC lyase I from proteus vulgaris at 1.9 angstroms resolution. Journal of Molecular Biology, 2003, 328(3): 623–634
17 Friesner R A O, Murphy R B, Repasky M P, Frye L L, Greenwood J R, Halgren T A, Sanschagrin P C, Mainzet D T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 2006, 49(21): 6177–6196
18 Baron E J, Finegold S M. In Bailey and Scott’s Diagnostic Microbiology, 8th ed; C.V. Mosby: St. Louis, 1990, 184–188
19 Massah A R, Adibi H, Khodarahmi R, Abiri R, Majnooni M B, Shahidi S, Asadi B, Mehrabi M, Zolfigol M A. T. Synthesis, in vitro antibacterial and carbonic anhydrase II inhibitory activities of N-acylsulfonamides using silica sulfuric acid as an efficient catalyst under both solvent-free and heterogeneous conditions. Bioorganic & Medicinal Chemistry, 2008, 16(10): 5465–5472
20 Andrews J M J. Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, 2001, 48(1): 5–16
21 Bissinger E M, Heinke R, Spannhoff A, Eberlin A, Metzger E, Cura V, Hassenboehler P, Cavarelli J, Schüle R, Bedford M T, Sippl W, Jung M. Acyl derivatives of p-aminosulfonamides and dapsone as new inhibitors of the arginine methyltransferase hPRMT1. Bioorganic & Medicinal Chemistry, 2011, 19(12): 3717–3731
22 Tandon V K, Maurya H K, Verma M K, Kumar R, Shukla P K. ‘On water’ assisted synthesis and biological evaluation of nitrogen and sulfur containing hetero-1,4-naphthoquinones as potent antifungal and antibacterial agents. European Journal of Medicinal Chemistry, 2010, 45(6): 2418–2426
23 Tandon V K, Maurya H K, Mishra N N, Shukla P K. Design, synthesis and biological evaluation of novel nitrogen and sulfur containing hetero-1,4-naphthoquinones as potent antifungal and antibacterial agents. European Journal of Medicinal Chemistry, 2009, 44(8): 3130–3137
24 Ravichandiran P, Premnath D, Vasanthkumar S. Synthesis, molecular docking and antibacterial evaluation of new 1,4-naphthoquinone derivatives contains carbazole-6,11-dione moiety. Journal of Chemical Biology, 2014, 7(3): 93–101
25 Ravichandiran P, Jegan A, Premnath D, Periasamy V S, Vasanthkumar S. Design, synthesis, molecular docking as histone deacetylase (HDAC8) inhibitors, cytotoxicity and antibacterial evaluation of novel 6-(4-(4-aminophenylsulfonyl)phenylamino)-5H-benzo[a]phenoxazin-5-one derivatives. Medicinal Chemistry Research, 2015, 24(1): 197–208
26 Ravichandiran P, Jegan A, Premnath D, Periasamy V S, Alshatwi A A, Vasanthkumar S. Synthesis, molecular docking and biological evaluation of novel 6-(4-(4-aminophenylsulfonyl)phenylamino)-5H-benzo[a]phenothiazin-5-one derivatives. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2015, 139: 477–487
27 National Committee for Clinical Laboratory Standard. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast, Approved Standard. Document M27-A. National Committee for Clinical Laboratory Standards, Wayne, PA, USA, 1997
28 National Committee for Clinical Laboratory Standard. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Conidium Forming Filamentous Fungi: Proposed Standard. Document M38-P. National Committee for Clinical Laboratory Standard, Wayne, PA, USA, 1998
[1] Lisa Xu, Kaifei Chen, George Q. Chen, Sandra E. Kentish, Gang (Kevin) Li. Development of barium@alginate adsorbents for sulfate removal in lithium refining[J]. Front. Chem. Sci. Eng., 2021, 15(1): 198-207.
[2] Ammaru Ismaila, Xueli Chen, Xin Gao, Xiaolei Fan. Thermodynamic analysis of steam reforming of glycerol for hydrogen production at atmospheric pressure[J]. Front. Chem. Sci. Eng., 2021, 15(1): 60-71.
[3] Uthen Thubsuang, Suphawadee Chotirut, Apisit Thongnok, Archw Promraksa, Mudtorlep Nisoa, Nicharat Manmuanpom, Sujitra Wongkasemjit, Thanyalak Chaisuwan. Facile preparation of polybenzoxazine-based carbon microspheres with nitrogen functionalities: effects of mixed solvents on pore structure and supercapacitive performance[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1072-1086.
[4] Chao Wang, Jun Chen, Jihua He, Jing Jiang, Qinyong Zhang. Effect of electrolyte concentration on the tribological performance of MAO coatings on aluminum alloys[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1065-1071.
[5] Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian. Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1018-1028.
[6] Wenming Li, Weijian Tang, Maoqin Qiu, Qiuge Zhang, Muhammad Irfan, Zeheng Yang, Weixin Zhang. Effects of gradient concentration on the microstructure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials[J]. Front. Chem. Sci. Eng., 2020, 14(6): 988-996.
[7] Qingzhuo Ni, Hao Cheng, Jianfeng Ma, Yong Kong, Sridhar Komarneni. Efficient degradation of orange II by ZnMn2O4 in a novel photo-chemical catalysis system[J]. Front. Chem. Sci. Eng., 2020, 14(6): 956-966.
[8] Yang An, Chao Chen, Jundong Zhu, Pankaj Dwivedi, Yanjun Zhao, Zheng Wang. Hypoxia-induced activity loss of a photo-responsive microtubule inhibitor azobenzene combretastatin A4[J]. Front. Chem. Sci. Eng., 2020, 14(5): 880-888.
[9] Jiang-Wei Shen, Xue Cai, Bao-Juan Dou, Feng-Yu Qi, Xiao-Jian Zhang, Zhi-Qiang Liu, Yu-Guo Zheng. Expression and characterization of a CALB-type lipase from Sporisorium reilianum SRZ2 and its potential in short-chain flavor ester synthesis[J]. Front. Chem. Sci. Eng., 2020, 14(5): 868-879.
[10] Jie Gao, Zhikai Li, Mei Dong, Weibin Fan, Jianguo Wang. Thermodynamic analysis of ethanol synthesis from hydration of ethylene coupled with a sequential reaction[J]. Front. Chem. Sci. Eng., 2020, 14(5): 847-856.
[11] Mengyun Wang, Shengbo Zhang, Mei Li, Aiguo Han, Xinli Zhu, Qingfeng Ge, Jinyu Han, Hua Wang. Facile synthesis of hierarchical flower-like Ag/Cu2O and Au/Cu2O nanostructures and enhanced catalytic performance in electrochemical reduction of CO2[J]. Front. Chem. Sci. Eng., 2020, 14(5): 813-823.
[12] Firat Salman, Hilal C. Kazici, Hilal Kivrak. Electrochemical sensor investigation of carbon-supported PdCoAg multimetal catalysts using sugar-containing beverages[J]. Front. Chem. Sci. Eng., 2020, 14(4): 629-638.
[13] Majid Peyravi. Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies[J]. Front. Chem. Sci. Eng., 2020, 14(4): 673-687.
[14] Yichen Liu, Yongli Li, Andreas Hensel, Juergen J. Brandner, Kai Zhang, Xiaoze Du, Yongping Yang. A review on emulsification via microfluidic processes[J]. Front. Chem. Sci. Eng., 2020, 14(3): 350-364.
[15] Simon Roussanaly, Monika Vitvarova, Rahul Anantharaman, David Berstad, Brede Hagen, Jana Jakobsen, Vaclav Novotny, Geir Skaugen. Techno-economic comparison of three technologies for pre-combustion CO2 capture from a lignite-fired IGCC[J]. Front. Chem. Sci. Eng., 2020, 14(3): 436-452.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed