Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (3) : 317-323    https://doi.org/10.1007/s11705-015-1522-6
REVIEW ARTICLE
High butanol production by regulating carbon, redox and energy in Clostridia? ?
Jianfa Ou1,Chao Ma1,Ningning Xu1,Yinming Du2,Xiaoguang (Margaret) Liu1,*()
1. Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35401, USA
2. Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
 Download: PDF(261 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Butanol is a promising biofuel with high energy intensity and can be used as gasoline substitute. It can be produced as a sustainable energy by microorganisms (such as Clostridia) from low-value biomass. However, the low productivity, yield and selectivity in butanol fermentation are still big challenges due to the lack of an efficient butanol-producing host strain. In this article, we systematically review the host cell engineering of Clostridia, focusing on (1) various strategies to rebalance metabolic flux to achieve a high butanol production by regulating the metabolism of carbon, redox or energy, (2) the challenges in pathway manipulation, and (3) the application of proteomics technology to understand the intracellular metabolism. In addition, the process engineering is also briefly described. The objective of this review is to summarize the previous research achievements in the metabolic engineering of Clostridium and provide guidance for future novel strain construction to effectively produce butanol.

Keywords Clostridia      butanol      biofuel      metabolism      carbon      redox      energy     
Corresponding Author(s): Xiaoguang (Margaret) Liu   
Online First Date: 05 August 2015    Issue Date: 30 September 2015
 Cite this article:   
Xiaoguang (Margaret) Liu,Jianfa Ou,Chao Ma, et al. High butanol production by regulating carbon, redox and energy in Clostridia? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 317-323.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1522-6
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I3/317
Fig.1  Metabolic pathway of butanol production in Clostridia. Key enzymes and genes in the pathway: lactate dehydrogenase (ldh); pyruvate-ferredoxin oxidorecuctase (pfor); phosphotransacetylase (pta); acetate kinase (ack); phosphotransbutyrylase (ptb); butyrate kinase (buk); CoA transferase A and B (ctfAB); alcohol dehydrogenase (adh); butanol dehydrogenase (bdh); aldehyde-alcohol dehydrogenase (adhE2 or aad). Dotted line indicates the pathway that does not naturally exist in the acidogenic strain such as C. tyrobutyricum
Fig.2  Butanol formation routes: directly through hot channel and through cold channel via acid re-assimiation
Fig.3  Central pathway of Clostridium butanol formation. Enzymes and genes: acetyl-CoA-acetyl transferase (ato); thiolase (thl); beta-hydroxybutyryl-CoA dehydrogenase (hbd); crotonase (crt); butyryl-CoA dehydrogenase (bcd); electron transferring flavoprotein (etf)
1 Dürre  P. Fermentative butanol production. Annals of the New York Academy of Sciences, 2008, 1125(1): 353–362
2 Caspeta  L, Buijs  N A A, Nielsen  J. The role of biofuels in the future energy supply. Energy & Environmental Science, 2013, 6(4): 177–182
3 Lütke-Eversloh  T, Bahl  H. Metabolic engineering of Clostridium acetobutylicum: Recent advances to improve butanol production. Current Opinion in Biotechnology, 2011, 22(5): 634–647
4 Tracy  B P, Jones  S W, Fast  A G, Indurthi  D C, Papoutsakis  E T. Clostridia: The importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Current Opinion in Biotechnology, 2012, 23(3): 364–381
5 Zheng  Y, Li  L, Xian  M, Ma  Y, Yang  J, Xu  X, He  D. Problems with the microbial production of butanol. Journal of Industrial Microbiology & Biotechnology, 2009, 36(9): 1127–1138
6 Yu  M, Zhang  Y, Tang  I, Yang  S. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metabolic Engineering, 2011, 13(4): 373–382
7 Harris  L M, Desai  R P, Welker  N E, Papoutsakis  E T. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnology and Bioengineering, 2000, 67(1): 1–11
8 Jang  Y S, Lee  J Y, Lee  J, Park  J H, Im  J A, Eom  M H, Lee  J, Lee  S H, Song  H, Cho  J H, Seung  D Y, Lee  S Y. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. mBio, 2012, 3(5): 1–9
9 Cooksley  C M, Zhang  Y, Wang  H, Redl  S, Winzer  K, Minton  N P. Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metabolic Engineering, 2012, 14(6): 630–641
10 Cai  G, Jin  B, Saint  C, Monis  P. Genetic manipulation of butyrate formation pathways in Clostridium butyricum. Journal of Biotechnology, 2011, 155(3): 269–274
11 Lu  C. Butanol production from lignocellulosic feedstocks by acetone-butanol-ethanol fermentation with integrated product recovery. Dissertation for the Doctoral Degree. Columbus: The Ohio State University, 2011, 2–25
12 Tummala  S B, Welker  N E, Papoutsakis  E T. Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum. Journal of Bacteriology, 2003, 185(6): 1923–1934
13 Nair  R V, Papoutsakis  E T. Expression of plasmid-encoded aad in Clostridium acetobutylicum M5 restores vigorous butanol production. Journal of Bacteriology, 1994, 176(18): 5843–5846
14 Yu  L, Zhao  J, Xu  M, Dong  J, Varghese  S, Yu  M, Tang  I, Yang  S. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: Effects of CoA transferase. Applied Microbiology and Biotechnology, 2015, published online
15 Ma  C, Kojima  K, Xu  N, Mobley  J, Zhou  L, Yang  S, Liu  X M. Comparative proteomics analysis of high n-butanol producing metabolically engineered Clostridium tyrobutyricum. Journal of Biotechnology, 2015, 193: 108–119
16 Rajagopalan  G, He  J, Yang  K. A highly efficient NADH-dependent butanol dehydrogenase from high-butanol-producing Clostridium sp. BOH3. BioEnergy Research, 2013, 6(1): 240–251
17 Kuit  W, Minton  N P, López-Contreras  A M, Eggink  G. Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production. Applied Microbiology and Biotechnology, 2012, 94(3): 729–741
18 Zhang  Y, Yu  M, Yang  S. Effects of ptb knockout on butyric acid fermentation by Clostridium tyrobutyricum. Biotechnology Progress, 2012, 28(1): 52–59
19 Lehmann  D, Radomski  N, Lütke-Eversloh  T. New insights into the butyric acid metabolism of Clostridium acetobutylicum. Applied Microbiology and Biotechnology, 2012, 96(5): 1325–1339
20 Heap  J T, Cartman  S T, Pennington  O J, Cooksley  C M, Scott  J C, Blount  B, Burns  D A, Minton  N P. Clostridia: Molecular Biology in the Post-genomic Era. Norfolk: Caister Academic Press, 2009, 179–198
21 Heap  J T, Pennington  O J, Cartman  S T, Carter  G P, Minton  N P. The ClosTron: A universal gene knock-out system for the genus Clostridium. Journal of Microbiological Methods, 2007, 70(3): 452–464
22 Heap  J T, Kuehne  S A, Ehsaan  M, Cartman  S T, Cooksley  C M, Scott  J C, Minton  N P. The ClosTron: Mutagenesis in Clostridium refined and streamlined. Journal of Microbiological Methods, 2010, 80(1): 49–55
23 Durre  P, Bohringer  M, Nakotte  S, Schaffer  S, Thormann  K, Zickner  B. Transcriptional regulation of solventogenesis in Clostridium acetobutylicum. Journal of Molecular Microbiology and Biotechnology, 2002, 4(3): 295–300
24 Lee  S Y, Park  J H, Jang  S H, Nielsen  L K, Kim  J, Jung  K S. Fermentative butanol production by clostridia. Biotechnology and Bioengineering, 2008, 101(2): 209–228
25 Jang  Y, Han  M, Lee  J, Im  J A, Lee  Y H, Papoutsakis  E T, Bennett  G, Lee  S Y. Proteomic analyses of the phase transition from acidogenesis to solventogenesis using solventogenic and non-solventogenic Clostridium acetobutylicum strains. Applied Microbiology and Biotechnology, 2014, 98(11): 5105–5115
26 Yang  S, Giannone  R J, Dice  L, Yang  Z K, Engle  N L, Tschaplinski  T J, Hettich  R L, Brown  S D. Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress. BMC Genomics, 2012, 13(1): 336–353
27 Nakayama  S, Kosaka  T, Hirakawa  H, Matsuura  K, Yoshino  S, Furukawa  K. Metabolic engineering for solvent productivity by downregulation of the hydrogenase gene cluster hupCBA in Clostridium saccharoperbutylacetonicum strain N1-4. Applied Microbiology and Biotechnology, 2008, 78(3): 483–493
28 Inui  M, Suda  M, Kimura  S, Yasuda  K, Suzuki  H, Toda  H, Yamamoto  S, Okino  S, Suzuki  N, Yukawa  H. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Applied Microbiology and Biotechnology, 2008, 77(6): 1305–1316
29 Grupe  H, Gottschalk  G. Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Applied and Environmental Microbiology, 1992, 58(12): 3896–3902
30 Berríos-Rivera  S. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Metabolic Engineering, 2002, 4(3): 230–237
31 Vemuri  G N, Eiteman  M A, McEwen  J E, Olsson  L, Nielsen  J. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(7): 2402–2407
32 Jo  J H, Lee  D S, Park  J M. The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Bioresource Technology, 2008, 99(17): 8485–8491
33 Jiang  M, Chen  J, He  A, Wu  H, Kong  X, Liu  J, Yin  C, Chen  W, Chen  P. Enhanced acetone/butanol/ethanol production by Clostridium beijerinckii IB4 using pH control strategy. Process Biochemistry, 2014, 49(8): 1238–1244
34 Tsai  T, Lo  Y, Chang  J. Effect of medium composition and pH control strategies on butanol fermentation with Clostridium acetobutylicum. Energy Procedia, 2014, 61: 1691–1694
35 Vardar-Schara  G, Maeda  T, Wood  T K. Metabolically engineered bacteria for producing hydrogen via fermentation. Microbial Biotechnology, 2008, 1(2): 107–125
36 Li  F, Hinderberger  J, Seedorf  H, Zhang  J, Buckel  W, Thauer  R K. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. Journal of Bacteriology, 2008, 190(3): 843–850
37 Shen  C, Lan  E, Dekishima  Y, Baez  A, Cho  K M, Liao  J. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Applied and Environmental Microbiology, 2011, 77(9): 2905–2915
38 Yu  R, Wang  R, Bi  T, Sun  W, Zhou  Z. Blocking the butyrate-formation pathway impairs hydrogen production in Clostridium perfringens. Acta Biochimica et Biophysica Sinica, 2013, 45(5): 408–415
39 Wang  Y, San  K Y, Bennett  G N. Cofactor engineering for advancing chemical biotechnology. Current Opinion in Biotechnology, 2013, 24(6): 994–999
40 Du  Y, Jiang  W, Yu  M, Tang  I, Yang  S. Metabolic process engineering of Clostridium tyrobutyricum Δack-adhE2 for enhanced n-butanol production from glucose: Effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics. Biotechnology and Bioengineering, 2015, 112(4): 705–715
41 Ujor  V, Agu  C V, Gopalan  V, Ezeji  T C. Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii during butanol fermentation. Applied Microbiology and Biotechnology, 2014, 98(14): 6511–6521
42 Hüsemann  M H, Papoutsakis  E T. Comparison between in vivo and in vitro enzyme activities in continuous and batch fermentations of Clostridium acetobutylicum. Applied Microbiology and Biotechnology, 1989, 30(6): 585–595
43 Wiesenborn  D P, Rudolph  F B, Papoutsakis  E T. Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents. Applied and Environmental Microbiology, 1988, 54(11): 2717–2722
44 Lan  E, Liao  J. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6018–6023
45 Ventura  J S, Hu  H, Jahng  D. Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes. Applied Microbiology and Biotechnology, 2013, 97(16): 7505–7516
46 Bowles  L K, Ellefson  W L. Effects of butanol on Clostridium acetobutylicum. Applied and Environmental Microbiology, 1985, 50(5): 1165–1170
47 Wang  J, Yang  X, Chen  C, Yang  S. Engineering clostridia for butanol production from biorenewable resources: from cells to process integration. Current Opinion in Chemical Engineering, 2014, 6: 43–54
48 Jo  J H, Lee  D S, Kim  J, Park  J M. Effect of initial glucose concentrations on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Journal of Microbiology and Biotechnology, 2009, 19(3): 291–298
49 Herrmann  G, Jayamani  E, Mai  G, Buckel  W. Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. Journal of Bacteriology, 2008, 190(3): 784–791
50 Lan  E, Liao  J. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresource Technology, 2013, 135: 339–349
[1] Faraz Montazersadgh, Hao Zhang, Anas Alkayal, Benjamin Buckley, Ben W. Kolosz, Bing Xu, Jin Xuan. Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2[J]. Front. Chem. Sci. Eng., 2021, 15(1): 208-219.
[2] Shilei Ding, Zelong Jiang, Jing Gu, Hongliang Zhang, Jiajia Cai, Dongdong Wang. Carbon-coated lithium titanate: effect of carbon precursor addition processes on the electrochemical performance[J]. Front. Chem. Sci. Eng., 2021, 15(1): 148-155.
[3] Wenqian Chen, Vikram Karde, Thomas N. H. Cheng, Siti S. Ramli, Jerry Y. Y. Heng. Surface hydrophobicity: effect of alkyl chain length and network homogeneity[J]. Front. Chem. Sci. Eng., 2021, 15(1): 90-98.
[4] Ammaru Ismaila, Xueli Chen, Xin Gao, Xiaolei Fan. Thermodynamic analysis of steam reforming of glycerol for hydrogen production at atmospheric pressure[J]. Front. Chem. Sci. Eng., 2021, 15(1): 60-71.
[5] Tong Zhang, Shan-Jiang Wang, Xiao-Yang Zhang, Ming Fu, Yi Yang, Wen Chen, Dan Su. Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization[J]. Front. Chem. Sci. Eng., 2021, 15(1): 35-48.
[6] Wenjie Sun, Jiale Mao, Shuang Wang, Lei Zhang, Yonghong Cheng. Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices from the perspective of target applications[J]. Front. Chem. Sci. Eng., 2021, 15(1): 18-34.
[7] Uthen Thubsuang, Suphawadee Chotirut, Apisit Thongnok, Archw Promraksa, Mudtorlep Nisoa, Nicharat Manmuanpom, Sujitra Wongkasemjit, Thanyalak Chaisuwan. Facile preparation of polybenzoxazine-based carbon microspheres with nitrogen functionalities: effects of mixed solvents on pore structure and supercapacitive performance[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1072-1086.
[8] Zishuai Liu, Yimin Zhang, Zilin Dai, Jing Huang, Cong Liu. Coextraction of vanadium and manganese from high-manganese containing vanadium wastewater by a solvent extraction-precipitation process[J]. Front. Chem. Sci. Eng., 2020, 14(5): 902-912.
[9] Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front. Chem. Sci. Eng., 2020, 14(5): 857-867.
[10] Yifei Wang, Shouying Huang, Xinsheng Teng, Hongyu Wang, Jian Wang, Qiao Zhao, Yue Wang, Xinbin Ma. Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time[J]. Front. Chem. Sci. Eng., 2020, 14(5): 802-812.
[11] Hanlu Wang, Idris Jibrin, Xingye Zeng. Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite[J]. Front. Chem. Sci. Eng., 2020, 14(4): 546-560.
[12] Colin A. Scholes. Pilot plants of membrane technology in industry: Challenges and key learnings[J]. Front. Chem. Sci. Eng., 2020, 14(3): 305-316.
[13] Simon Roussanaly, Monika Vitvarova, Rahul Anantharaman, David Berstad, Brede Hagen, Jana Jakobsen, Vaclav Novotny, Geir Skaugen. Techno-economic comparison of three technologies for pre-combustion CO2 capture from a lignite-fired IGCC[J]. Front. Chem. Sci. Eng., 2020, 14(3): 436-452.
[14] Mahboube Ghahramaninezhad, Fatemeh Mohajer, Mahdi Niknam Shahrak. Improved CO2 capture performances of ZIF-90 through sequential reduction and lithiation reactions to form a hard/hard structure[J]. Front. Chem. Sci. Eng., 2020, 14(3): 425-435.
[15] Dawid P. Hanak, Vasilije Manovic. Linking renewables and fossil fuels with carbon capture via energy storage for a sustainable energy future[J]. Front. Chem. Sci. Eng., 2020, 14(3): 453-459.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed