Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (4) : 494-500    https://doi.org/10.1007/s11705-015-1527-1
RESEARCH ARTICLE
Size-controlled green synthesis of silver nanoparticles assisted by L-cysteine
Wenchao Zhang,Lin Zhang(),Yan Sun
Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(1366 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A green and size-controlled synthesis of silver nanoparticles (Ag NPs) in aqueous solution with the assistance of L-cysteine is presented. The size of Ag NPs decreases with the increase of L-cysteine concentration, and thus can be controlled by adjusting L-cysteine concentration. TEM analysis shows that Ag NPs with an average size of 3 nm can be produced in the presence of 1.0 mmol/L L-cysteine, about one sixth of the size of Ag NPs obtained in the absence of L-cysteine (17 nm). The as-synthesized silver colloidal solution is stable and can be stored at room temperature for at least two months without any precipitation. This L-cysteine assisted method is simple, feasible and efficient, and would facilitate the production and application of Ag NPs.

Keywords nanoparticles      silver      L-cysteine      size distribution      synthesis     
Corresponding Author(s): Lin Zhang   
Online First Date: 09 September 2015    Issue Date: 26 November 2015
 Cite this article:   
Wenchao Zhang,Lin Zhang,Yan Sun. Size-controlled green synthesis of silver nanoparticles assisted by L-cysteine[J]. Front. Chem. Sci. Eng., 2015, 9(4): 494-500.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1527-1
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I4/494
Fig.1  (a) FTIR spectra of pure Cys and Ag NPs; (b) size distribution of Ag NPs obtained in the presence of Cys of different concentrations
Fig.2  QELS results of Ag NPs in the (a) absence and (b) presence of 0.5 mmol/L Cys
Fig.3  Photographs of silver colloids obtained in the absence and presence of Cys
Fig.4  TEM images of Ag NPs synthesized in the (a) absence of Cys and (b) presence of 0.1 mmol/L Cys, (c) 0.5 mmol/L Cys, and (d) 1.0 mmol/L Cys; (e) HRTEM image and (f) EDX pattern of Ag NPs synthesized with 0.1 mmol/L Cys
Fig.5  Size distribution of Ag NPs in the (a) absence and (b) presence of 0.1 mmol/L Cys, (c) 0.5 mmol/L Cys, and (d) 1.0 mmol/L Cys, calculated by TEM image analysis software (Nano measurer 1.2)
Cys concentration /(mmol?L−1) PDI Zeta potential /mV
0.0 0.204 −35.8
0.1 0.168 −17.3
0.5 0.090 −14.7
1.0 0.268 −10.7
Tab.1  PDI and zeta potential of Ag NPs at different Cys concentration
Fig.6  TEM image of Ag NPs synthesized in the presence of 0.1 mmol/L Cys and after the storage of two months. The corresponding photograph is shown in inset
Fig.7  XRD pattern of Ag NPs in the presence of 0.1 mmol/L Cys
Fig.8  Schematic diagram for the formation mechanism of Cys-Ag NPs
1 Lai  G S, Wang  L L, Wu  J, Ju  H X, Yan  F. Electrochemical stripping analysis of nanogold label-induced silver deposition for ultrasensitive multiplexed detection of tumor markers. Analytica Chimica Acta, 2012, 721: 1–6
2 Lin  Y, Chen  C, Wang  C, Pu  F, Ren  J, Qu  X. Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag-catechol interaction. Chemical Communications, 2011, 47(4): 1181–1183
3 Yang  L, Ma  L, Chen  G, Liu  J, Tian  Z Q. Ultrasensitive SERS detection of TNT by imprinting molecular recognition using a new type of stable substrate. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(42): 12683–12693
4 Liu  P, Zhao  M. Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP). Applied Surface Science, 2009, 255(7): 3989–3993
5 Yu  D, Yam  V W W. Controlled synthesis of monodisperse silver nanocubes in water. Journal of the American Chemical Society, 2004, 126(41): 13200–13201
6 Lan  H, Han  J, Chen  H, Zhao  X. Ag/PMMA hollow waveguide for solar energy transmission. Frontiers of Chemical Science and Engineering, 2011, 5(3): 303–307
7 Wiley  B, Sun  Y, Xia  Y. Synthesis of silver nanostructures with controlled shapes and properties. Accounts of Chemical Research, 2007, 40(10): 1067–1076
8 Kida  S, Ichiji  M, Watanabe  J, Hirasawa  I. Particle size distribution and shape control of Au nanoparticles used for particle gun. Frontiers of Chemical Science and Engineering, 2013, 7(1): 60–64
9 Brust  M, Walker  M, Bethell  D, Schiffrin  D J, Whyman  R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Chemical Communications, 1994, (7): 801–802
10 Sun  S, Murray  C, Weller  D, Folks  L, Moser  A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000, 287(5460): 1989–1992
11 Wu  N, Fu  L, Su  M, Aslam  M, Wong  K C, Dravid  V P. Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Letters, 2004, 4(2): 383–386
12 Harra  J, Mäkitalo  J, Siikanen  R, Virkki  M, Genty  G, Kobayashi  T, Kauranen  M, Mäkelä  J M. Size-controlled aerosol synthesis of silver nanoparticles for plasmonic materials. Journal of Nanoparticle Research, 2012, 14(6): 1–10
13 Pfeiffer  T, Ortiz-Gonzalez  J, Santbergen  R, Tan  H, Ott  A S, Zeman  M, Smets  A. Plasmonic nanoparticle films for solar cell applications fabricated by size-selective aerosol deposition. Energy Procedia, 2014, 60: 3–12
14 Jung  K, Song  H J, Lee  G, Ko  Y, Ahn  K, Choi  H, Kim  J Y, Ha  K, Song  J, Lee  J K, Lee  C, Choi  M. Plasmonic organic solar cells employing nanobump assembly via aerosol-derived nanoparticles. ACS Nano, 2014, 8(3): 2590–2601
15 Wang  L, Li  H, Tian  J, Sun  X. Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: Rapid, large-scale, wet-chemical synthesis and their application as SERS substrates. ACS Applied Materials & Interfaces, 2010, 2(11): 2987–2991
16 Mishra  Y, Mohapatra  S, Kabiraj  D, Mohanta  B, Lalla  N, Pivin  J, Avasthi  D. Synthesis and characterization of Ag nanoparticles in silica matrix by atom beam sputtering. Scripta Materialia, 2007, 56(7): 629–632
17 Ge  J, Lei  J, Zare  R N. Protein-inorganic hybrid nanoflowers. Nature Nanotechnology, 2012, 7(7): 428–432
18 Kang  L, Xu  P, Chen  D, Zhang  B, Du  Y, Han  X, Li  Q, Wang  H L. Amino acid-assisted synthesis of hierarchical silver microspheres for single particle surface-enhanced Raman spectroscopy. Journal of Physical Chemistry C, 2013, 117(19): 10007–10012
19 Wei  H, Wang  Z, Zhang  J, House  S, Gao  Y G, Yang  L M, Robinson  H, Tan  L H, Xing  H, Hou  C J, Robertson  I M, Zuo  J M, Lu  Y. Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. Nature Nanotechnology, 2011, 6(2):  93–97
20 Zhao  S, Yao  J, Fei  X, Shao  Z, Chen  X. An antimicrobial film by embedding in situ synthesized silver nanoparticles in soy protein isolate. Materials Letters, 2013, 95: 142–144
21 Guli  M, Lambert  E M, Li  M, Mann  S. Template-directed synthesis of nanoplasmonic arrays by intracrystalline metalization of cross-linked lysozyme crystals. Angewandte Chemie International Edition, 2010, 49(3): 520–523
22 Pandey  S, Goswami  G K, Nanda  K K. Green synthesis of biopolymer-silver nanoparticle nanocomposite: An optical sensor for ammonia detection. International Journal of Biological Macromolecules, 2012, 51(4): 583–589
23 Saini  R K, Srivastava  A K, Gupta  P K, Das  K. pH dependent reversible aggregation of Chitosan and glycol-Chitosan stabilized silver nanoparticles. Chemical Physics Letters, 2011, 511(4-6): 326–330
24 Hung  Y C, Hsu  W T, Lin  T Y, Fruk  L. Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite. Applied Physics Letters, 2011, 99(25): 253301
25 Guo  C, Irudayaraj  J. Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor. Analytical Chemistry, 2011, 83(8): 2883–2889
26 Slocik  J M, Wright  D W. Biomimetic mineralization of noble metal nanoclusters. Biomacromolecules, 2003, 4(5): 1135–1141
27 Zaheer  Z, Malik  M A, Al-Nowaiser  F M, Khan  Z. Preparation of silver nanoparticles using tryptophan and its formation mechanism. Colloids and Surfaces. B, Biointerfaces, 2010, 81(2): 587–592
28 Liu  Z, Xing  Z, Zu  Y, Tan  S, Zhao  L, Zhou  Z, Sun  T. Synthesis and characterization of L-histidine capped silver nanoparticles. Materials Science and Engineering C, 2012, 32(4): 811–816
29 Tengvall  P, Lestelius  M, Liedberg  B, Lundström  I. Plasma protein and antisera interactions with L-cysteine and 3-mercaptopropionic acid monolayers on gold surfaces. Langmuir, 1992, 8(5): 1236–1238
30 Jiang  C, Guan  Z, Lim  S Y, Polavarapu  L, Xu  Q H. Two-photon ratiometric sensing of Hg2+ by using cysteine functionalized Ag nanoparticles. Nanoscale, 2011, 3(8): 3316–3320
31 Perni  S, Hakala  V, Prokopovich  P. Biogenic synthesis of antimicrobial silver nanoparticles capped with L-cysteine. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2014, 460: 219–224
32 Underwood  S, Mulvaney  P. Effect of the solution refractive index on the color of gold colloids. Langmuir, 1994, 10(10): 3427–3430
33 Pakhomov  P M, Abramchuk  S S, Khizhnyak  S D, Ovchinnikov  M M, Spiridonova  V M. Formation of nanostructured hydrogels in  <?A3B2 th=7pt?>L<?A3B2 th?>-cysteine and silver nitrate solutions. Nanotechnologies in Russia, 2010, 5(3-4): 209–213
34 Babic  M, Horák  D, Jendelová  P, Glogarová  K I, Herynek  V T, Trchová  M, Likavčanová  K N, Lesný  P, Pollert  E, Hájek  M, Syková  E. Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling. Bioconjugate Chemistry, 2009, 20(2): 283–294
35 Mocanu  A, Cernica  I, Tomoaia  G, Bobos  L D, Horovitz  O, Tomoaia-Cotisel  M. Self-assembly characteristics of gold nanoparticles in the presence of cysteine. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2009, 338(1-3): 93–101
36 Nidhin  M, Indumathy  R, Sreeram  K, Nair  B U. Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bulletin of Materials Science, 2008, 31(1): 93–96
37 Honary  S, Barabadi  H, Gharaei-Fathabad  E, Naghibi  F. Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Tropical Journal of Pharmaceutical Research, 2013, 12(1): 7–11
38 Sun  Y, Xia  Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601): 2176–2179
39 Kim  Y H, Lee  D K, Kang  Y S. Synthesis and characterization of Ag and Ag–SiO2 nanoparticles. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2005, 257-258: 273–276
40 Li  H, Bian  Y. Selective colorimetric sensing of histidine in aqueous solutions using cysteine modified silver nanoparticles in the presence of Hg2+. Nanotechnology, 2009, 20(14): 145502
[1] Faraz Montazersadgh, Hao Zhang, Anas Alkayal, Benjamin Buckley, Ben W. Kolosz, Bing Xu, Jin Xuan. Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2[J]. Front. Chem. Sci. Eng., 2021, 15(1): 208-219.
[2] Yifei Wang, Shouying Huang, Xinsheng Teng, Hongyu Wang, Jian Wang, Qiao Zhao, Yue Wang, Xinbin Ma. Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time[J]. Front. Chem. Sci. Eng., 2020, 14(5): 802-812.
[3] Pavlo I. Kyriienko. Selective catalytic reduction of NOx with ethanol and other C1-4 oxygenates over Ag/Al2O3 catalysts: A review[J]. Front. Chem. Sci. Eng., 2020, 14(4): 471-491.
[4] Feichao Wu, Yanling Wang, Xiongfu Zhang. Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water[J]. Front. Chem. Sci. Eng., 2020, 14(4): 651-660.
[5] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[6] Rongxin Zhang, Peinan Zhong, Hamidreza Arandiyan, Yanan Guan, Jinmin Liu, Na Wang, Yilai Jiao, Xiaolei Fan. Using ultrasound to improve the sequential post-synthesis modification method for making mesoporous Y zeolites[J]. Front. Chem. Sci. Eng., 2020, 14(2): 275-287.
[7] Zhaoqi Ye, Hongbin Zhang, Yahong Zhang, Yi Tang. Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties[J]. Front. Chem. Sci. Eng., 2020, 14(2): 143-158.
[8] Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
[9] Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light[J]. Front. Chem. Sci. Eng., 2019, 13(4): 665-671.
[10] Liangliang Lin, Xintong Ma, Sirui Li, Marly Wouters, Volker Hessel. Plasma-electrochemical synthesis of europium doped cerium oxide nanoparticles[J]. Front. Chem. Sci. Eng., 2019, 13(3): 501-510.
[11] Bin Xu, Toshiro Kaneko, Toshiaki Kato. Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse plasma CVD[J]. Front. Chem. Sci. Eng., 2019, 13(3): 485-492.
[12] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[13] Navid Azizi, Mojgan Isanejad, Toraj Mohammadi, Reza M. Behbahani. Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 517-530.
[14] Fan Shu, Meng Wang, Jinbo Pang, Ping Yu. A free-standing superhydrophobic film for highly efficient removal of water from turbine oil[J]. Front. Chem. Sci. Eng., 2019, 13(2): 393-399.
[15] Long Cheng, Ruirui Zhang, Hongke Wu, Xinghai Liu, Tianming Xu. The synthesis of 6-(tert-butyl)-8-fluoro-2,3-dimethylquinoline carbonate derivatives and their antifungal activity against Pyricularia oryzae[J]. Front. Chem. Sci. Eng., 2019, 13(2): 369-376.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed