Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (3) : 262-279    https://doi.org/10.1007/s11705-015-1528-0
REVIEW ARTICLE
Oxidative desulfurization of fuels using ionic liquids: A review? ?
Hua Zhao1,*(),Gary A. Baker2
1. Department of Chemistry and Forensic Science, Savannah State University, Savannah, GA 31404, USA
2. Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
 Download: PDF(609 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Extractive oxidation, wherein aromatic sulfur-containing compounds are extracted and subsequently oxidized to their corresponding sulfones, has proven to be one of the most effective desulfurization methods for producing ultra-low sulfur content fuels. As non-volatile and highly designable solvents, ionic liquids (ILs) have attracted considerable attention for the oxidative desulfurization of fuels. In this review, we systematically discuss the utility of ILs in catalytic and extractive oxidation, including their role as extractant, catalyst, or both. We also discuss the challenges facing the use of ILs in this regard, including their relatively high cost and excessive viscosity, as well as their efficiency and stability as catalyst.

Keywords oxidative desulfurization      ionic liquids      extraction      fuels      petroleum      polyoxometalates     
Corresponding Author(s): Hua Zhao   
Online First Date: 09 September 2015    Issue Date: 30 September 2015
 Cite this article:   
Hua Zhao,Gary A. Baker. Oxidative desulfurization of fuels using ionic liquids: A review? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 262-279.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1528-0
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I3/262
Fig.1  Scheme 1 Structures of typical cations and anions used in IL formulation
# Substrate IL Oil Oil/IL /(v?v−1) T/°C KN in /( m g s ? L I L 1 )/( m g s ? L o i l 1 ) Ref.
1 DBT [BMIM]Cl/AlCl3 n-Dodecane 1:1 r.t. 4.0 [20]
2 DBT [BMIM][BF4] n-Dodecane 1:1 r.t. 0.7 [20]
3 DBT [BMIM][PF6] n-Dodecane 1:1 60 0.9 [20]
4 DBT [BMIM][dca] n-Hexane 1:1 25 2.28 [31]
5 DBT [BMIM][OctSO4] n-Dodecane 1:1 r.t. 1.9 [20]
6 Thiophene [BMIM][OctSO4] iso-Octane 1:1 r.t. 0.7 [20]
7 BT [BMIM][OctSO4] n-Dodecane 1:1 r.t. 1.6 [20]
8 4,6-DMDBT [BMIM][OctSO4] n-Dodecane 1:1 r.t. 0.9 [20]
9 DBT [EMIM][dca] n-Hexane 1:1 25 1.3 [31]
10 DBT [EMIM][EtSO4] n-Dodecane 1:1 r.t. 0.8 [20]
11 Thiophene [EMIM][EtSO4] iso-Octane r.t. 0.53 [32]
12 BT [EMIM][EtSO4] iso-Octane r.t. 0.70 [32]
13 DBT [EMIM][EtSO4] iso-Octane r.t. 0.99 [32]
14 DBT [MMIM][Me2PO4] n-Dodecane 1:1 r.t. 0.7 [20]
15 DBT [OMIM][BF4] n-Octane 5:1 2.91 [33]
16 BT [OMIM][BF4] n-Octane 5:1 2.33 [33]
17 4,6-DMDBT [OMIM][BF4] n-Octane 5:1 1.70 [33]
18 DBT [BuPy][BF4] n-Octane 1:1 40 0.83 [34]
19 DBT [BuPy][BF4] n-Dodecane 1:1 r.t. 0.77 [35]
20 DBT [BuPy][SCN] n-Octane 1:1 40 1.14 [34]
21 DBT [BuPy][HSO4] n-Octane 1:1 40 1.42 [34]
22 DBT [BuPy][H2PO4] n-Octane 1:1 40 1.24 [34]
23 DBT [HexPy][BF4] n-Dodecane 1:1 r.t. 1.42 [35]
24 DBT [OctPy][BF4] n-Dodecane 1:1 r.t. 1.79 [35]
25 DBT [3-Me-BuPy][BF4] n-Dodecane 1:1 r.t. 2.08 [36]
26 DBT [3-Me-HexPy][BF4] n-Dodecane 1:1 r.t. 2.89 [36]
27 DBT [3-Me-OctPy][BF4] n-Dodecane 1:1 r.t. 3.11 [36]
28 DBT [MePyo][BF4] n-Octane 1:1 60 0.64 [37]
29 DBT [EtMe2S][dca] n-Hexane 1:1 25 0.84 [31]
30 DBT [Me3NCH2C6H5]Cl·2ZnCl2 n-Octane 5:1 30 2.03 [38]
31 DBT [S2][dca] n-Hexane 1:1 25 1.08 [31]
Tab.1  Nernst partition coefficients (KN) of aromatic sulfur-containing compounds
# Catalyst Extractant DBT/cat, molar ratio H2O2/DBT, molar ratio T/°C t/min S/ppm Sremoval /% Ref.
1 MoO(O2)2·Glycine [BMIM][PF6] 10 4 70 180 99.2 [39]
2 MoO(O2)2·Glycine [BMIM][BF4] 10 4 70 180 99 [39]
3 MoO(O2)2·Glycine or Na2MoO4·2H2O [BMIM][BF4] 10 4 70 180 99 [39]
4 [(C4H9)4N]6[Mo7O24] [BMIM][PF6] 100 5 50 120 500 99 [40]
5 [(C12H25)N+Me3]4[Mo8O26] [HO3S(CH2)3-MIM][BF4] 10 8 70 180 1000 100 [41]
6 [(C4H9)4N]4W10O32 [BMIM][PF6] 100 3 60 30 1000 98 [42]
7 [(CH3)4N]4W10O32 [BMIM][PF6] 100 3 60 30 1000 97 [42]
8 [(C2H5)3(C7H7)]4W10O32 [BMIM][PF6] 100 3 60 30 1000 66 [42]
9 Na4W10O32 [BMIM][PF6] 100 3 60 30 1000 95 [42]
10 [(C8H17)3NCH3]2W6O19 [OMIM][PF6] 50 3 60 60 500 98 [43]
11 Na7H2EuW10O36·32H2O [BMIM][BF4] 20 3 60 10 1000 99 [44]
12 Na7H2LaW10O36·32H2O [BMIM][BF4] 20 3 60 20 1000 99 [44]
13 Na7H2LaW10O36·32H2O [BMIM][BF4] 100 3 60 25 1000 99 [44]
14 Na7H2LaW10O36·32H2O [BMIM][BF4] 100 5 60 20 1000 99 [44]
15 H3PW12O40 [BMIM][BF4] 100 3 30 60 1000 98 [45]
16 [PSPy]3PW12O40 [BMIM][BF4] 120 4 30 60 500 81 [46]
17 [PSPy]3PW12O40 [BMIM][PF6] 120 4 30 60 500 96 [46]
18 [PSPy]3PW12O40 [OMIM][BF4] 120 4 30 60 500 77 [46]
19 [PSPy]3PW12O40 [BMIM][PF6] 120 4 30 60 500 99 [46]
20 Na7H2EuW10O36·32H2O [BMIM][BF4] 20 5 30 20 1000 99 [44]
21 Na7H2LaW10O36·32H2O [BMIM][BF4] 100 5 30 40 1000 99 [44]
22 Na7H2LaW10O36·32H2O [BMIM][BF4] 50 5 30 30 1000 99 [44]
23 Na7H2LaW10O36·32H2O [BMIM][BF4] 20 5 30 25 1000 100 [44]
24 V2O5 [BMIM][BF4] 20 6 30 240 1000 98.7 [47]
25 VO(acac)2 [BMIM][BF4] 20 5 30 120 99.6 [48]
Tab.2  Catalytic oxidative desulfurization of DBT by polyoxometalate/IL systems
Fig.2  Scheme 2 The extractive and catalytic oxidation process of deep desulfurization, using dibenzothiophene (DBT) as the aromatic sulfur-containing compound for illustration. (Reprinted with permission from Ref. [51], Copyright © 2012 Royal Society of Chemistry)
Fig.3  Scheme 3 Catalytic oxidation of DBT in a water-in-IL emulsion system designed around an amphiphilic ionic catalyst consisting of a quaternary ammonium cation and a POM anion. (Reprinted with permission from Ref. [106], Copyright © 2011 American Chemical Society)
Fig.4  Scheme 4 Extractive and oxidative desulfurization using a catalytic water-in-IL emulsion system based on a tungsten-containing amphiphilic catalyst (Reprinted with permission from Ref. [107], Copyright © 2013 Royal Society of Chemistry)
Fig.5  Scheme 5 Bifunctional ammonium phosphotungstate ILs for thermoregulated oxidative desulfurization
Fig.6  Scheme 6 Bifunctional 1-butyl-3-(poly(ethylene glycol))imidazolium phosphotungstate ILs for thermoregulated oxidative desulfurization
<?Pub Caret1?>
4,6-DMDBT= 4,6-dimethyldibenzothiophene
4-MDBT= 4-methyldibenzothiophene
BMIM+ = 1-butyl-3-methylimidazolium
EMIM+ = 1-ethyl-3-methylimidazolium
OMIM+ = 1-octyl-3-methylimidazolium
C2CN-BIM+ = 1-propionitrile-3-butylimidazolium
MIMPS+ = 1-(3-sulfo)propyl-3-methylimidazolium
BuPy+ = N-butylpyridinium
HexPy+ = N-hexylpyridinium
OctPy+ = N-octylpyridinium
HMMPy+ = 1-hexyl-2,4-dimethylpyridinium
3-Me-BuPy+ = 1-butyl-3-methylpyridinium
3-Me-HexPy+ = 1-hexyl-3-methyl pyridinium
3-Me-OctPy+ = 1-octyl-3-methylpyridinium
PSPy= 1-(3-sulfopropyl)pyridinium
TOMA+ = trioctylmethylammonium
MePyo+ = N-methyl-pyrrolidonium
S2+ = ethyltetrahydrothiophenium
Dca? = dicyanamide
OTs? = tosylate
Tab.1  
1 Harrison  R M, Yin  J. Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Science of the Total Environment, 2000, 249(1-3): 85–101
2 Matsumoto  S, Ikeda  Y, Suzuki  H, Ogai  M, Miyoshi  N. NOx storage-reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning. Applied Catalysis B: Environmental, 2000, 25(2-3): 115–124
3 Kulkarni  P S, Afonso  C A M. Deep desulfurization of diesel fuel using ionic liquids: Current status and future challenges. Green Chemistry, 2010, 12(7): 1139–1149
4 Babich  I V, Moulijn  J A. Science and technology of novel processes for deep desulfurization of oil refinery streams: A review. Fuel, 2003, 82(6): 607–631
5 Song  C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today, 2003, 86(1-4): 211–263
6 Baeza  P, Aguila  G, Gracia  F, Araya  P. Desulfurization by adsorption with copper supported on zirconia. Catalysis Communications, 2008, 9(5): 751–755
7 Ma  X, Sakanishi  K, Mochida  I. Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel. Industrial & Engineering Chemistry Research, 1994, 33(2): 218–222
8 Kwak  C, Lee  J J, Bae  J S, Choi  K, Moon  S H. Hydrodesulfurization of DBT, 4-MDBT, and 4,6-DMDBT on fluorinated CoMoS/Al2O3 catalysts. Applied Catalysis A, General, 2000, 200(1-2): 233–242
9 Gochi  Y, Ornelas  C, Paraguay  F, Fuentes  S, Alvarez  L, Rico  J L, Alonso-Núñez  G. Effect of sulfidation on Mo-W-Ni trimetallic catalysts in the HDS of DBT. Catalysis Today, 2005, 107-108: 531–536
10 Wasserscheid  P, Welton  T. Ionic Liquids in Synthesis, 2nd ed. Weinheim: Wiley-VCH, 2008
11 Jain  N, Kumar  A, Chauhan  S, Chauhan  S M S. Chemical and biochemical transformations in ionic liquids. Tetrahedron, 2005, 61(5): 1015–1060
12 Zhao  H, Malhotra  S V. Applications of ionic liquids in organic synthesis. Aldrichimica Acta, 2002, 35(3): 75–83
13 Endres  F, Welton  T. Inorganic synthesis. In: Wasserscheid  P, Welton  T, eds. Ionic Liquids in Synthesis. Weinheim: Wiley-VCH, 2003, 289–318
14 van Rantwijk  F, Sheldon  R A. Biocatalysis in ionic liquids. Chemical Reviews, 2007, 107(6): 2757–2785
15 Moniruzzaman  M, Nakashima  K, Kamiya  N, Goto  M. Recent advances of enzymatic reactions in ionic liquids. Biochemical Engineering Journal, 2010, 48(3): 295–314
16 Kubisa  P. Application of ionic liquids as solvents for polymerization processes. Progress in Polymer Science, 2004, 29(1): 3–12
17 Brennecke  J F, Maginn  E J. Purification of gas with liquid ionic compounds. US Patent, 6 579 343
18 Zhao  H. Innovative applications of ionic liquids as ‘green’ engineering liquids. Chemical Engineering Communications, 2006, 193(12): 1660–1677
19 Francisco  M, Arce  A, Soto  A. Ionic liquids on desulfurization of fuel oils. Fluid Phase Equilibria, 2010, 294(1-2): 39–48
20 Eßer  J, Wasserscheid  P, Jess  A. Deep desulfurization of oil refinery streams by extraction with ionic liquids. Green Chemistry, 2004, 6: 316–322
21 Abro  R, Abdeltawab  A A, Al-Deyab  S S, Yu  G, Qazi  A B, Gao  S, Chen  X. A review of extractive desulfurization of fuel oils using ionic liquids. RSC Advances, 2014, 4(67): 35302–35317
22 Bosmann  A, Datsevich  L, Jess  A, Lauter  A, Schmitz  C, Wasserscheid  P. Deep desulfurization of diesel fuel by extraction with ionic liquids. Chemical Communications, 2001, (23): 2494–2495
23 Zhang  S, Zhang  Q, Zhang  Z C. Extractive desulfurization and denitrogenation of fuels using ionic liquids. Industrial & Engineering Chemistry Research, 2004, 43(2): 614–622
24 Jochen  E, Wasserscheid  P, Jess  A. Deep desulfurization of oil refinery streams by extraction with ionic liquids. Green Chemistry, 2004, 6(7): 316–322
25 Huang  C, Chen  B, Zhang  J, Liu  Z, Li  Y. Desulfurization of gasoline by extraction with new ionic liquids. Energy & Fuels, 2004, 18(6): 1862–1864
26 O'Rear  D J, Boudreau  L C, Driver  M S, Munson  C L. Removal of mercaptans from hydrocarbon streams using ionic liquids. WO 2002034863 A1, 2002-<month>05</month>-<day>02</day>
27 Alonso  L, Arce  A, Francisco  M, Rodríguez  O, Soto  A. Gasoline desulfurization using extraction with [C8mim][BF4] ionic liquid. AIChE Journal. American Institute of Chemical Engineers, 2007, 53(12): 3108–3115
28 Hansmeier  A R, Meindersma  G W, de Haan  A B. Desulfurization and denitrogenation of gasoline and diesel fuels by means of ionic liquids. Green Chemistry, 2011, 13(7): 1907–1913
29 Asumana  C, Yu  G, Guan  Y, Yang  S, Zhou  S, Chen  X. Extractive denitrogenation of fuel oils with dicyanamide-based ionic liquids. Green Chemistry, 2011, 13(11): 3300–3305
30 García-Gutiérrez  J L, Lozano  I P, Hernández-Pérez  F, Laredo  G C, Jimenez-Cruz  F R. R & D in Oxidative Desulfurization of Fuels Technologies: From Chemistry to Patents. Recent Patents on Chemical Engineering, 2012, 5(3): 174–196
31 Asumana  C, Yu  G, Li  X, Zhao  J, Liu  G, Chen  X. Extractive desulfurization of fuel oils with low-viscosity dicyanamide-based ionic liquids. Green Chemistry, 2010, 12(11): 2030–2037
32 Maity  U, Basu  J K, Sengupta  S. Performance study of extraction and oxidation-extraction coupling processes in the removal of thiophenic compounds. Fuel Processing Technology, 2014, 121: 119–124
33 Jiang  W, Zhu  W, Li  H, Chao  Y, Xun  S, Chang  Y, Liu  H, Zhao  Z. Mechanism and optimization for oxidative desulfurization of fuels catalyzed by Fenton-like catalysts in hydrophobic ionic liquid. Journal of Molecular Catalysis A Chemical, 2014, 382: 8–14
34 Zhao  D, Wang  Y, Duan  E, Zhang  J. Oxidation desulfurization of fuel using pyridinium-based ionic liquids as phase-transfer catalysts.  Fuel  Processing Technology,  2010,  91(12):  1803–1806
35 Gao  H, Luo  M, Xing  J, Wu  Y, Li  Y, Li  W, Liu  Q, Liu  H. Desulfurization of fuel by extraction with pyridinium-based ionic liquids. Industrial & Engineering Chemistry Research, 2008, 47(21): 8384–8388
36 Gao  H, Li  Y, Wu  Y, Luo  M, Li  Q, Xing  J, Liu  H. Extractive desulfurization of fuel using 3-methylpyridinium-based ionic liquids. Energy & Fuels, 2009, 23(5): 2690–2694
37 Zhao  D, Wang  J, Zhou  E. Oxidative desulfurization of diesel fuel using a Brønsted acid room temperature ionic liquid in the presence of H2O2. Green Chemistry, 2007, 9(11): 1219–1222
38 Li  F, Liu  R, Wen  J, Zhao  D, Sun  Z, Liu  Y. Desulfurization of dibenzothiophene by chemical oxidation and solvent extraction with Me3NCH2C6H5Cl·2ZnCl2 ionic liquid. Green Chemistry, 2009, 11(6): 883–888
39 Zhu  W, Li  H, Gu  Q, Wu  P, Zhu  G, Yan  Y, Chen  G. Kinetics and mechanism for oxidative desulfurization of fuels catalyzed by peroxo-molybdenum amino acid complexes in water-immiscible ionic liquids. Journal of Molecular Catalysis A Chemical, 2011, 336(1-2): 16–22
40 Lü  H, Deng  C, Ren  W, Yang  X. Oxidative desulfurization of model diesel using [(C4H9)4N]6Mo7O24 as a catalyst in ionic liquids. Fuel Processing Technology, 2014, 119: 87–91
41 Ge  J, Zhou  Y, Yang  Y, Xue  M. The deep oxidative desulfurization of fuels catalyzed by surfactant-type octamolybdate in acidic ionic liquids. Petroleum Science and Technology, 2014, 32(1): 116–123
42 Li  H, Jiang  X, Zhu  W, Lu  J, Shu  H, Yan  Y. Deep oxidative desulfurization of fuel oils catalyzed by decatungstates in the ionic liquid of [Bmim]PF6. Industrial & Engineering Chemistry Research, 2009, 48(19): 9034–9039
43 Ding  Y, Zhu  W, Li  H, Jiang  W, Zhang  M, Duan  Y, Chang  Y. Catalytic oxidative desulfurization with a hexatungstate/aqueous H2O2/ionic liquid emulsion system. Green Chemistry, 2011, 13(5): 1210–1216
44 Xu  J, Zhao  S, Chen  W, Wang  M, Song  Y. Highly efficient extraction and oxidative desulfurization system using Na7H2LaW10O36·32H2O in [bmim]BF4 at room temperature. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(15): 4775–4781
45 Li  H, He  L, Lu  J, Zhu  W, Jiang  X, Wang  Y, Yan  Y. Deep oxidative desulfurization of fuels catalyzed by phosphotungstic acid in ionic liquids at room temperature. Energy & Fuels, 2009, 23(3): 1354–1357
46 Huang  W, Zhu  W, Li  H, Shi  H, Zhu  G, Liu  H, Chen  G. Heteropolyanion-based ionic liquid for deep desulfurization of fuels in ionic liquids. Industrial & Engineering Chemistry Research, 2010, 49(19): 8998–9003
47 Xu  D, Zhu  W, Li  H, Zhang  J, Zou  F, Shi  H, Yan  Y. Oxidative desulfurization of fuels catalyzed by V2O5 in ionic liquids at room temperature. Energy & Fuels, 2009, 23(12): 5929–5933
48 Zhu  W, Xu  D, Li  H, Ding  Y, Zhang  M, Liu  H, Chao  Y. Oxidative desulfurization of dibenzothiophene catalyzed by VO(acac)2 in ionic liquids at room temperature. Petroleum Science and Technology, 2013, 31(14): 1447–1453
49 Rhule  J T, Hill  C L, Judd  D A, Schinazi  R F. Polyoxometalates in medicine. Chemical Reviews, 1998, 98(1): 327–358
50 Zhu  W, Li  H, Jiang  X, Yan  Y, Lu  J, Xia  J. Oxidative desulfurization of fuels catalyzed by peroxotungsten and peroxomolybdenum complexes in ionic liquids. Energy & Fuels, 2007, 21(5): 2514–2516
51 Zhu  W, Li  H, Jiang  X, Yan  Y, Lu  J, He  L, Xia  J. Commercially available molybdic compound-catalyzed ultra-deep desulfurization of fuels in ionic liquids. Green Chemistry, 2008, 10(6): 641–646
52 He  L, Li  H, Zhu  W, Guo  J, Jiang  X, Lu  J, Yan  Y. Deep oxidative desulfurization of fuels using peroxophosphomolybdate catalysts in ionic liquids. Industrial & Engineering Chemistry Research, 2008, 47(18): 6890–6895
53 Zhu  G, Zhu  W, Li  H, Huang  W, Jiang  Y, Ding  Y, Jiang  W. Kinetics for oxidation of dibenzothiophene catalyzed by Keggin-based heteropoly acids/H2O2 in [bmim]BF4. Petroleum Science and Technology, 2012, 30(23): 2407–2416
54 Shao  B, Shi  L, Meng  X. Deep desulfurization of 4,6-dimethyldienzothiophene by an ionic liquids extraction coupled with catalytic oxidation with a molybdic compound. Industrial & Engineering Chemistry Research, 2014, 53(16): 6655–6663
55 Liu  D, Gui  J, Ding  J, Ma  J, Lee  J, Sun  Z. Oxidation of dibenzothiophene catalyzed by Na2WO4 in a halogen-free ionic liquid. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104(1): 111–123
56 Chao  Y, Li  H, Zhu  W, Zhu  G, Yan  Y. Deep oxidative desulfurization of dibenzothiophene in simulated diesel with tungstate and H2O2 in ionic liquids. Petroleum Science and Technology, 2010, 28(12): 1242–1249
57 Chuang  L, Huang  J, Lo  W, Wei  G. Deep desulfurization of light oil through extraction and oxidation processes using H2O2/tungstophosphoric acid in room-temperature ionic liquids. Journal of the Chilean Chemical Society, 2012, 59(3): 324–330
58 Zhang  B, Jiang  Z, Li  J, Zhang  Y, Lin  F, Liu  Y, Li  C. Catalytic oxidation of thiophene and its derivatives via dual activation for ultra-deep desulfurization of fuels. Journal of Catalysis, 2012, 287: 5–12
59 Zhang  M, Zhu  W, Xun  S, Li  H, Gu  Q, Zhao  Z, Wang  Q. Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids. Chemical Engineering Journal, 2013, 220: 328–336
60 Liu  D, Gui  J, Liu  D, Peng  X, Yang  S, Sun  Z. Deep oxidative desulfurization of real diesel catalyzed by Na2WO4 in ionic liquid. Energy Resour. Part A, 2013, 35(1): 1–8
61 Ge  J, Zhou  Y, Yang  Y, Gao  Q, Wu  X, Sun  Q. The deep oxidative desulfurization of fuels using Na2WO4·2H2O in acidic ionic liquids. Petroleum Science and Technology, 2013, 31(21): 2280–2286
https://doi.org/10.1080/10916466.2011.567203
62 Xu  Y, Zhou  J, Zhou  T, Chao  Y, Yan  S, Jiang  X, Chen  X, Zhu  W, Li  H. Extraction joined with adsorption and catalytic oxidation of dibenzothiophene with commercially available tungsten carbide. Key Engineering Materials, 2014, 575-576: 539–542
https://doi.org/10.4028/www.scientific.net/KEM.575-576.539
63 Chen  Y, Zhao  S, Song  Y. An efficient heterogeneous catalyst based on highly dispersed Na7H2LaW10O36·32H2O nanoparticles on mesoporous silica for deep desulfurization. Applied Catalysis A, General, 2013, 466: 307–314
https://doi.org/10.1016/j.apcata.2013.06.030
64 Mota  A, Butenko  N, Hallett  J P, Correia  I. Application of VIVO(acac)2 type complexes in the desulfurization of fuels with ionic liquids. Catalysis Today, 2012, 196(1): 119–125
https://doi.org/10.1016/j.cattod.2012.03.037
65 Ge  J, Zhou  Y, Yang  Y, Xue  M. Catalytic oxidative desulfurization of gasoline using vanadium (V)-substituted polyoxometalate/H2O2/ionic liquid emulsion system. China Petroleum Processing and Petrochemical Technology, 2012, 14(1): 25–31
66 Zhou  M, Meng  W, Li  Y, Wang  Q, Li  X, Zang  S. Extractive and catalytic oxidative desulfurization of gasoline by methyltrioxorhenium in ionic liquids. Energy & Fuels, 2014, 28(1): 516–521
https://doi.org/10.1021/ef402103e
67 Lo  W H, Yang  H Y, Wei  G T. One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room-temperature ionic liquids. Green Chemistry, 2003, 5(5): 639–642
https://doi.org/10.1039/b305993f
68 Taha  M F, Atikah  N, Chong  F K, Shaharun  M S. Oxidative desulfurization of dibenzothiophene from model oil using ionic liquids as extracting agent. AIP Conference Proceedings, 2012, 1482: 258–262
https://doi.org/10.1063/1.4757476
69 Rodríguez-Cabo  B, Rodríguez  H, Rodil  E, Arce  A, Soto  A. Extractive and oxidative-extractive desulfurization of fuels with ionic liquids. Fuel, 2014, 117: 882–889
https://doi.org/10.1016/j.fuel.2013.10.012
70 Zhao  D, Sun  Z, Li  F, Liu  R, Shan  H. Oxidative desulfurization of thiophene catalyzed by (C4H9)4NBr·2C6H11NO coordinated ionic liquid. Energy & Fuels, 2008, 22(5): 3065–3069
https://doi.org/10.1021/ef800162w
71 Zhao  D, Sun  Z, Li  F, Shan  H. Optimization of oxidative desulfurization of dibenzothiophene using a coordinated ionic liquid as catalytic solvent. Petroleum Science and Technology, 2009, 27(17): 1907–1918
https://doi.org/10.1080/10916460802653954
72 Nejad  N F, Shams  E, Amini  M K. Ionic liquid-based extraction of sulfur compounds from gasoline as a complementary process to oxidative desulfurization. Petroleum Science and Technology, 2014, 32(13): 1537–1544
https://doi.org/10.1080/10916466.2012.689794
73 Cheng  S, Yen  T F. Use of ionic liquids as phase-transfer catalysis for deep oxygenative desulfurization. Energy & Fuels, 2008, 22(2): 1400–1401
https://doi.org/10.1021/ef700734x
74 Liang  W, Zhang  S, Li  H, Zhang  G. Oxidative desulfurization of simulated gasoline catalyzed by acetic acid-based ionic liquids at room temperature. Fuel Processing Technology, 2013, 109: 27–31
https://doi.org/10.1016/j.fuproc.2012.09.034
75 Lü  H, Wang  S, Deng  C, Ren  W G B, Guo  B. Oxidative desulfurization of model diesel via dual activation by aprotic ionic liquid. Journal of Hazardous Materials, 2014, 279: 220–225
https://doi.org/10.1016/j.jhazmat.2014.07.005
76 Zhang  J, Zhu  W, Li  H, Jiang  W, Jiang  Y, Huang  W, Yan  Y. Deep oxidative desulfurization of fuels by Fenton-like reagent in ionic liquids. Green Chemistry, 2009, 11(11): 1801–1807
https://doi.org/10.1039/b914130h
77 Xiong  J, Zhu  W, Li  H, Xu  Y, Jiang  W, Xun  S, Liu  H, Zhao  Z. Immobilized Fenton-like ionic liquid: Catalytic performance for oxidative desulfurization. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(12): 4696–4704
https://doi.org/10.1002/aic.14197
78 Ding  W, Zhu  W, Xiong  J, Yang  L, Wei  A, Zhang  M, Li  H. Novel heterogeneous iron-based redox ionic liquid supported on SBA-15 for deep oxidative desulfurization of fuels. Chemical Engineering Journal, 2015, 266: 213–221
https://doi.org/10.1016/j.cej.2014.12.040
79 Wang  J, Guo  Q, Zhang  C, Li  K. One-pot extractive and oxidative desulfurization of liquid fuels with molecular oxygen in ionic liquids. RSC Advances, 2014, 4(104): 59885–59889
https://doi.org/10.1039/C4RA09659B
80 Jiang  W, Zhu  W, Chang  Y, Li  H, Chao  Y, Xiong  J, Liu  H, Yin  S. Oxidation of aromatic sulfur compounds catalyzed by organic hexacyanoferrates in ionic liquids with a low concentration of H2O2 as an oxidant. Energy & Fuels, 2014, 28(4): 2754–2760
https://doi.org/10.1021/ef500082y
81 Zhang  J, Li  J, Ren  T, Hu  Y, Ge  J, Zhao  D. Oxidative desulfurization of dibenzothiophene based on air and cobalt phthalocyanine in an ionic liquid. RSC Advances, 2014, 4(7): 3206–3210
https://doi.org/10.1039/C3RA43765E
82 Lu  L, Cheng  S, Gao  J, Gao  G, He  M. Deep oxidative desulfurization of fuels catalyzed by ionic liquid in the presence of H2O2. Energy & Fuels, 2007, 21(1): 383–384
https://doi.org/10.1021/ef060345o
83 Zhao  D, Wang  Y, Duan  E. Oxidative desulfurization of fuel oil by pyridinium-based ionic liquids. Molecules (Basel, Switzerland), 2009, 14(11): 4351–4357
https://doi.org/10.3390/molecules14114351
84 Fang  D, Wang  Q, Liu  Y, Xia  L, Zang  S. High-efficient oxidation-extraction desulfurization process by ionic liquid 1-butyl-3-methyl-imidazolium trifluoroacetic acid. Energy & Fuels, 2014, 28(10): 6677–6682
https://doi.org/10.1021/ef501675m
85 Lissner  E, de Souza  W F, Ferrera  B, Dupont  J. Oxidative desulfurization of fuels with task-specific ionic liquids. ChemSusChem, 2009, 2(10): 962–964
https://doi.org/10.1002/cssc.200900171
86 Li  F, Kou  C, Sun  Z, Hao  Y, Liu  R, Zhao  D. Deep extractive and oxidative desulfurization of dibenzothiophene with C5H9NO·SnCl2 coordinated ionic liquid. Journal of Hazardous materials, 2012, 205-206: 164–170
87 Seeberger  A, Jess  A. Desulfurization of diesel oil by selective oxidation and extraction of sulfur compounds by ionic liquids—a contribution to a competitive process design. Green Chemistry, 2010, 12(4): 602–608
https://doi.org/10.1039/b918724c
88 Wilfred  C D, Salleh  M Z M, Abdul Mutalib  M I. Desulfurization of oxidized diesel using ionic liquids. AIP Conference Proceedings, 2014, 1621: 197–201
https://doi.org/10.1063/1.4898466
89 Zhuang  J, Hu  B, Tan  J, Jin  X. Deep oxidative desulfurization of dibenzothiophene with molybdovanadophosphoric heteropolyacid-based catalysts. Transition Metal Chemistry, 2014, 39(2): 213–220
https://doi.org/10.1007/s11243-013-9792-7
90 Zhang  J W A, Li  X, Ma  X. Oxidative desulfurization of dibenzothiophene and diesel over [Bmim]3PMo12O40. Journal of Catalysis, 2011, 279(2): 269–275
https://doi.org/10.1016/j.jcat.2011.01.016
91 Zhu  W, Huang  W, Li  H, Zhang  M, Jiang  W, Chen  G, Han  C. Polyoxometalate-based ionic liquids as catalysts for deep desulfurization of fuels. Fuel Processing Technology, 2011, 92(10): 1842–1848
https://doi.org/10.1016/j.fuproc.2011.04.030
92 Tang  L, Luo  G, Kang  L, Zhu  M, Dai  B. A novel [Bmim]PW/HMS catalyst with high catalytic performance for the oxidative desulfurization process. Korean Journal of Chemical Engineering, 2013, 30(2): 314–320
https://doi.org/10.1007/s11814-012-0182-1
93 Zhang  H, Gao  J, Meng  H, Li  C. Removal of thiophenic sulfurs using an extractive oxidative desulfurization process with three new phosphotungstate catalysts. Industrial & Engineering Chemistry Research, 2012, 51(19): 6658–6665
https://doi.org/10.1021/ie3004545
94 Ribeiro  S, Barbosa  A D S, Gomes  A C, Pillinger  M, Gonçalves  I S, Cunha-Silva  L, Balula  S S. Catalytic oxidative desulfurization systems based on Keggin phosphotungstate and metal-organic framework MIL-101. Fuel Processing Technology, 2013, 116: 350–357
https://doi.org/10.1016/j.fuproc.2013.07.011
95 Chen  Y, Zhang  F, Fang  Y, Zhu  X, Zhen  W, Wang  R, Ma  J. Phosphotungstic acid containing ionic liquid immobilized on magnetic mesoporous silica rod catalyst for the oxidation of dibenzothiophene with H2O2. Catalysis Communications, 2013, 38: 54–58
https://doi.org/10.1016/j.catcom.2013.04.005
96 Rafiee  E, Eavani  S. Organic-inorganic polyoxometalate based salts as thermoregulatedphase-separable catalysts for selective oxidation of thioethers andthiophenes and deep desulfurization of model fuels. Journal of Molecular Catalysis A Chemical, 2013, 380: 18–27
https://doi.org/10.1016/j.molcata.2013.09.009
97 Zhang  M, Zhu  W, Li  H, Xun  S, Ding  W, Liu  J, Zhao  Z, Wang  Q. One-pot synthesis, characterization and desulfurization of functional mesoporous W-MCM-41 from POM-based ionic liquids. Chemical Engineering Journal, 2014, 243: 386–393
https://doi.org/10.1016/j.cej.2013.12.093
98 Wang  M, Wu  Q, Li  H, Zhao  Y, Jiao  Q. Oxidative desulfurization of dibenzothiophene catalyzed by polyoxometalate-based ionic liquid. Advanced Materials Research, 2014, 1033-1034: 65–69
https://doi.org/10.4028/www.scientific.net/AMR.1033-1034.65
99 Xiong  J, Zhu  W, Ding  W, Yang  L, Chao  Y, Li  H, Zhu  F, Li  H. Phosphotungstic acid immobilized on ionic liquid-modified SBA-15: Efficient hydrophobic heterogeneous catalyst for oxidative desulfurization in fuel. Industrial & Engineering Chemistry Research, 2014, 53(51): 19895–19904
https://doi.org/10.1021/ie503322a
100 Zhou  X, Chen  W, Song  Y. Superhydrophobic polyoxometalate/calixarene inorganic-organic hybrid materials with highly efficient desulfurization ability. European Journal of Inorganic Chemistry, 2014, 2014: 812–817
101 Gu  Q, Zhu  W, Xun  S, Chang  Y, Xiong  J, Zhang  M, Jiang  W, Zhu  F, Li  H. Preparation of highly dispersed tungsten species within mesoporous silica by ionic liquid and their enhanced catalytic activity for oxidative desulfurization. Fuel, 2014, 117: 667–673
https://doi.org/10.1016/j.fuel.2013.08.082
102 Zhu  W, Dai  B, Wu  P, Chao  Y, Xiong  J, Xun  S, Li  H, Li  H. Graphene-analogue hexagonal BN supported with tungsten-based ionic liquid for oxidative desulfurization of fuels. ACS Sustainable Chemistry & Engineering, 2015, 3(1): 186–194
https://doi.org/10.1021/sc5006928
103 Li  J, Hu  B, Hu  C. Deep desulfurization of fuels by heteropolyanion-based ionic liquid. Bulletin of the Korean Chemical Society, 2013, 34(1): 225–230
https://doi.org/10.5012/bkcs.2013.34.1.225
104 Wu  J, Gao  Y, Zhang  W, Tan  Y, Tang  A, Men  Y, Tang  B. Deep desulfurization by oxidation using an active ionic liquid-supported Zr metal-organic framework as catalyst. Applied Organometallic Chemistry, 2015, 29(2): 96–100
https://doi.org/10.1002/aoc.3251
105 Zhu  W, Zhu  G, Li  H, Chao  Y, Chang  Y, Chen  G, Han  C. Oxidative desulfurization of fuel catalyzed by metal-based surfactant-type ionic liquids. Journal of Molecular Catalysis A Chemical, 2011, 347(1-2): 8–14
https://doi.org/10.1016/j.molcata.2011.07.002
106 Ge  J, Zhou  Y, Yang  Y, Xue  M. Catalytic oxidative desulfurization of gasoline using ionic liquid emulsion system. Industrial & Engineering Chemistry Research, 2011, 50(24): 13686–13692
https://doi.org/10.1021/ie201325e
107 Zhu  W, Ding  Y, Li  H, Qin  J, Chao  Y, Xiong  J, Xu  Y, Liu  H. Application of a self-emulsifiable task-specific ionic liquid in oxidative desulfurization of fuels. RSC Advances, 2013, 3(12): 3893–3898
https://doi.org/10.1039/c3ra23274c
108 Zhu  W, Zhu  G, Li  H, Chao  Y, Zhang  M, Du  D, Wang  Q, Zhao  Z. Catalytic kinetics of oxidative desulfurization with surfactant-type polyoxometalate-based ionic liquids. Fuel Processing Technology, 2013, 106: 70–76
https://doi.org/10.1016/j.fuproc.2012.07.003
109 Xu  J, Zhao  S, Ji  Y, Song  Y. Deep desulfurization by amphiphilic lanthanide-containing polyoxometalates in ionic-liquid emulsion systems under mild conditions. Chemistry (Weinheim an der Bergstrasse, Germany), 2013, 19(2): 709–715
https://doi.org/10.1002/chem.201202595
110 Lü  H, Ren  W, Wang  H, Wang  Y, Chen  W, Suo  Z. Deep desulfurization of diesel by ionic liquid extraction coupled with catalytic oxidation using an Anderson-type catalyst [(C4H9)4N]4NiMo6O24H6. Applied Catalysis A, General, 2013, 453: 376–382
https://doi.org/10.1016/j.apcata.2012.12.047
111 Gui  J, Liu  D, Sun  Z, Liu  D, Min  D, Song  B, Peng  X. Deep oxidative desulfurization with task-specific ionic liquids: An experimental and computational study. Journal of Molecular Catalysis A Chemical, 2010, 331(1-2): 64–70
https://doi.org/10.1016/j.molcata.2010.08.003
112 Liu  D, Gui  J, Park  Y, Yang  S, Gao  Y, Peng  X, Sun  Z. Deep removal of sulfur from real diesel by catalytic oxidation with halogen-free ionic liquid. Korean Journal of Chemical Engineering, 2012, 29(1): 49–53
https://doi.org/10.1007/s11814-011-0135-0
113 Gao  H, Guo  C, Xing  J, Zhao  J, Liu  H. Extraction and oxidative desulfurization of diesel fuel catalyzed by a Brønsted acidic ionic liquid at room temperature. Green Chemistry, 2010, 12(7): 1220–1224
https://doi.org/10.1039/c002108c
114 Chi  Y, Li  C, Jiao  Q, Liu  Q, Yan  P, Liu  X, Urs  W B. Desulfurization by oxidation combined with extraction using acidic room-temperature ionic liquids. Green Chemistry, 2011, 13(5): 1224–1229
https://doi.org/10.1039/c0gc00745e
115 Yu  G, Zhao  J, Song  D, Asumana  C, Zhang  X, Chen  X. Deep oxidative desulfurization of diesel fuels by acidic ionic liquids. Industrial & Engineering Chemistry Research, 2011, 50(20): 11690–11697
https://doi.org/10.1021/ie200735p
116 Chen  X, Song  D, Asumana  C, Yu  G. Deep oxidative desulfurization of diesel fuels by Lewis acidic ionic liquids based on 1-n-butyl-3-methylimidazolium metal chloride. Journal of Molecular Catalysis A Chemical, 2012, 359: 8–13
https://doi.org/10.1016/j.molcata.2012.03.014
117 Zhang  C, Pan  X, Wang  F, Liu  X. Extraction-oxidation desulfurization by pyridinium-based task-specific ionic liquids. Fuel, 2012, 102: 580–584
https://doi.org/10.1016/j.fuel.2012.07.040
118 Chen  X, Guan  Y, Abdeltawab  A A, Al-Deyab  S S, Yuan  X, Wang  C, Yu  G. Using functional acidic ionic liquids as both extractant and catalyst in oxidative desulfurization of diesel fuel: An investigation of real feedstock. Fuel, 2015, 146: 6–12
https://doi.org/10.1016/j.fuel.2014.12.091
119 Li  H, Zhu  W, Wang  Y, Zhang  J, Lu  J, Yan  Y. Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride. Green Chemistry, 2009, 11(6): 810–815
https://doi.org/10.1039/b901127g
120 Jiang  Y, Zhu  W, Li  H, Yin  S, Liu  H, Xie  Q. Oxidative desulfurization of fuels catalyzed by Fenton-like ionic liquids at room temperature. ChemSusChem, 2011, 4(3): 399–403
https://doi.org/10.1002/cssc.201000251
121 Jiang  W, Zhu  W, Li  H, Xiong  J, Xun  S, Zhao  Z, Wang  Q. Deep oxidative desulfurization of fuels catalyzed by magnetic Fenton-like hybrid catalysts in ionic liquids. RSC Advances, 2013, 3(7): 2355–2361
https://doi.org/10.1039/c2ra22227b
122 Nie  Y, Dong  Y, Bai  L, Dong  H, Zhang  X. Fast oxidative desulfurization of fuel oil using dialkylpyridinium tetrachloroferrates ionic liquids. Fuel, 2013, 103: 997–1002
https://doi.org/10.1016/j.fuel.2012.07.071
123 Zhu  W, Wu  P, Yang  L, Chang  Y, Chao  Y, Li  H, Jiang  Y, Jiang  W, Xun  S. Pyridinium-based temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuels. Chemical Engineering Journal, 2013, 229: 250–256
https://doi.org/10.1016/j.cej.2013.05.115
124 Dong  Y, Nie  Y, Zhou  Q. Highly efficient oxidative desulfurization of fuels by Lewis acidic ionic liquids based on iron chloride. Chemical Engineering & Technology, 2013, 36(3): 435–442
https://doi.org/10.1002/ceat.201200570
125 Jiang  W, Zhu  W, Li  H, Xue  J, Xiong  J, Chang  Y, Liu  H, Zhao  Z. Fast oxidative removal of refractory aromatic sulfur compounds by a magnetic ionic liquid. Chemical Engineering & Technology, 2014, 37(1): 36–42
https://doi.org/10.1002/ceat.201300376
126 Nie  Y, Gong  X, Gao  H, Zhang  X, Zhang  S. Simultaneous desulfurization and denitrogen of liquid fuels using two functionalized group ionic liquids. Science China. Chemistry, 2014, 57(12): 1766–1773
https://doi.org/10.1007/s11426-014-5164-1
127 Yu  F, Wang  Y, Liu  C, Xie  C, Yu  S. Oxidative desulfurization of fuels catalyzed by ammonium oxidative-thermoregulated bifunctional ionic liquids. Chemical Engineering Journal, 2014, 255: 372–376
https://doi.org/10.1016/j.cej.2014.06.087
128 Yu  F, Liu  C, Xie  C, Yuan  B, Bu  T, Yu  S. Synthesis and property of imidazolium oxidative-thermoregulated ionic liquids. Chinese Science Bulletin, 2014, 59(34): 4705–4711
https://doi.org/10.1007/s11434-014-0397-0
129 Wang  J, Zhao  D, Li  K. Oxidative desulfurization of dibenzothiophene using ozone and hydrogen peroxide in ionic liquid. Energy & Fuels, 2010, 24(4): 2527–2529
https://doi.org/10.1021/ef901324p
130 Ma  C, Dai  B, Xu  C, Liu  P, Qi  L, Ban  L. Deep oxidative desulfurization of model fuel via dielectric barrier discharge plasma oxidation using MnO2 catalysts and combination of ionic liquid extraction. Catalysis Today, 2013, 211: 84–89
https://doi.org/10.1016/j.cattod.2013.02.009
131 Ban  L, Liu  P, Ma  C, Dai  B. Deep desulfurization of diesel fuels with plasma/air as oxidizing medium, diperiodatocuprate (III) as catalyzer and ionic liquid as extraction solvent. Plasma Science and Technology, 2013, 15(12): 1226–1231
https://doi.org/10.1088/1009-0630/15/12/12
132 Ma  C, Dai  B, Liu  P, Zhou  N, Shi  A, Ban  L, Chen  H. Deep oxidative desulfurization of model fuel using ozone generated by dielectric barrier discharge plasma combined with ionic liquid extraction. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 2769–2774
https://doi.org/10.1016/j.jiec.2013.11.005
133 Li  F, Liu  R, Sun  Z. Photocatalytic oxidative desulfurization of gasoline by TiO2 in [bmim]Cu2Cl3 ionic liquid. China Petroleum Processing and Petrochemical Technology, 2008, 9(4): 53–57
134 Zhao  Y, Hao  Y, Li  F. Photocatalytic oxidation desulfurization of fuel using nano-TiO2 in ionic liquid. Advanced Materials Research, 2011, 282-283: 599–602
https://doi.org/10.4028/www.scientific.net/AMR.282-283.599
135 Wang  X, Li  F, Liu  J, Kou  C, Zhao  Y, Hao  Y, Zhao  D. Preparation of TiO2 in ionic liquid via microwave radiation and in situ photocatalytic oxidative desulfurization of diesel oil. Energy & Fuels, 2012, 26: 6777–6782
136 Wang  T, Zhao  D, Sun  Z, Li  F, Song  Y, Kou  C. One-step oxidative desulfurization of dibenzothiophene using cyclohexanone peroxide in N-alkyl-imidazolium-based ionic liquid extraction systems. Petroleum Science and Technology, 2011, 30(4): 385–392
https://doi.org/10.1080/10916466.2011.601510
137 Zhao  D, Liu  R, Wang  J, Liu  B. Photochemical oxidation-ionic liquid extraction coupling technique in deep desulphurization of light oil. Energy & Fuels, 2008, 22(2): 1100–1103
https://doi.org/10.1021/ef700668h
138 Zhu  W, Xu  Y, Li  H, Dai  B, Xu  H, Wang  C, Chao  Y, Liu  H. Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO2 in ionic liquid. Korean Journal of Chemical Engineering, 2014, 31(2): 211–217
https://doi.org/10.1007/s11814-013-0224-3
139 Zaid  H F M, Kait  C F, Abdul Mutalib  M I. Integrated photooxidative-extractive desulfurization system for fuel oil using Cu, Fe and Cu-Fe/ TiO2 and eutectic based ionic liquids: Effect of calcination temperature and duration. AIP Conference Proceedings, 2014, 1621: 231–236
https://doi.org/10.1063/1.4898471
140 Ferreira  J P, Viveiros  R, Lourenço  A, da Silva  M S, Rosatella  A, Casimiro  T, Afonso  C A M. Integrated desulfurization of diesel by combination of metal-free oxidation and product removal by molecularly imprinted polymers. RSC Advances, 2014, 4(98): 54948–54952
https://doi.org/10.1039/C4RA11666F
141 Xu  H, Han  Z, Zhang  D, Liu  C. Theoretical elucidation of the dual role of [hmim]BF4 ionic liquid as catalyst and extractant in the oxidative desulfurization of dibenzothiophene. Journal of Molecular Catalysis A Chemical, 2015, 398: 297–303
https://doi.org/10.1016/j.molcata.2014.12.018
[1] Faraz Montazersadgh, Hao Zhang, Anas Alkayal, Benjamin Buckley, Ben W. Kolosz, Bing Xu, Jin Xuan. Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2[J]. Front. Chem. Sci. Eng., 2021, 15(1): 208-219.
[2] Boa Jin, Hyunmin Park, Yang Liu, Leijing Liu, Jongdeok An, Wenjing Tian, Chan Im. Charge-carrier photogeneration and extraction dynamics of polymer solar cells probed by a transient photocurrent nearby the regime of the space charge-limited current[J]. Front. Chem. Sci. Eng., 2021, 15(1): 164-179.
[3] Zishuai Liu, Yimin Zhang, Zilin Dai, Jing Huang, Cong Liu. Coextraction of vanadium and manganese from high-manganese containing vanadium wastewater by a solvent extraction-precipitation process[J]. Front. Chem. Sci. Eng., 2020, 14(5): 902-912.
[4] Hanlu Wang, Idris Jibrin, Xingye Zeng. Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite[J]. Front. Chem. Sci. Eng., 2020, 14(4): 546-560.
[5] Dawid P. Hanak, Vasilije Manovic. Linking renewables and fossil fuels with carbon capture via energy storage for a sustainable energy future[J]. Front. Chem. Sci. Eng., 2020, 14(3): 453-459.
[6] Elena Graczová, Branislav Šulgan, Samuel Barabas, Pavol Steltenpohl. Methyl acetate–methanol mixture separation by extractive distillation: Economic aspects[J]. Front. Chem. Sci. Eng., 2018, 12(4): 670-682.
[7] Yu Yang, Hassan Javed, Danning Zhang, Deyi Li, Roopa Kamath, Kevin McVey, Kanwartej Sra, Pedro J.J. Alvarez. Merits and limitations of TiO2-based photocatalytic pretreatment of soils impacted by crude oil for expediting bioremediation[J]. Front. Chem. Sci. Eng., 2017, 11(3): 387-394.
[8] Weibin Kong, Qi Miao, Peiyong Qin, Jan Baeyens, Tianwei Tan. Environmental and economic assessment of vegetable oil production using membrane separation and vapor recompression[J]. Front. Chem. Sci. Eng., 2017, 11(2): 166-176.
[9] Yunzhao Li,Xingfu Song,Guilan Chen,Shuying Sun,Yanxia Xu,Jianguo Yu. Extraction of hydrogen chloride by a coupled reaction-solvent extraction process[J]. Front. Chem. Sci. Eng., 2015, 9(4): 479-487.
[10] Yunling Gao,Ying Hu,Kejian Yao. Surface molecularly imprinted polymers for solid-phase extraction of (--)-epigallocatechin gallate from toothpaste[J]. Front. Chem. Sci. Eng., 2015, 9(4): 467-478.
[11] Pravin WAKTE,Ajit PATIL,Bhusari SACHIN,Munnaza QUAZI,Shraddha JABDE,Devanand SHINDE. Optimization of microwave-assisted extraction for picroside I and picroside II from Picrorrhiza kurroa using Box-Behnken experimental design[J]. Front. Chem. Sci. Eng., 2014, 8(4): 445-453.
[12] N. Rambabu,Sandeep Badoga,Kapil K. Soni,A.K. Dalai,J. Adjaye. Hydrotreating of light gas oil using a NiMo catalyst supported on activated carbon produced from fluid petroleum coke[J]. Front. Chem. Sci. Eng., 2014, 8(2): 161-170.
[13] Chuanzhu LU,Hui FU,Huipeng LI,Hua ZHAO,Tianfeng CAI. Oxidation-extraction desulfurization of model oil over Zr-ZSM-5/SBA-15 and kinetic study[J]. Front. Chem. Sci. Eng., 2014, 8(2): 203-211.
[14] Liyan LIU, Yu ZHANG, Wei TAN. Synthesis and characterization of phosphotungstic acid/activated carbon as a novel ultrasound oxidative desulfurization catalyst[J]. Front Chem Sci Eng, 2013, 7(4): 422-427.
[15] J. Sargolzaei, A. Hedayati Moghaddam. Predicting the yield of pomegranate oil from supercritical extraction using artificial neural networks and an adaptive-network-based fuzzy inference system[J]. Front Chem Sci Eng, 2013, 7(3): 357-365.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed