Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (3) : 359-368    https://doi.org/10.1007/s11705-015-1530-6
RESEARCH ARTICLE
Fluoroalcohol-mediated reductive iodonio-Claisen rearrangement: Synthesis of complex ortho-substituted-allyl iodoarenes? ?
Hem Raj Khatri,Hai Nguyen,James K. Dunaway,Jianglong Zhu()
Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH 43606, USA
 Download: PDF(443 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Reductive iodonio-Claisen rearrangement (RICR) involving λ3-iodanes and allyl or substituted-allyl silanes in fluoroalcohols, such as 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) and 2,2,2-trifluoroethanol (TFE), was studied for the synthesis of complex ortho-allyl or substituted-allyl iodoarenes. In comparison to the previously reported condition involving boron trifluoride diethyl etherate, the RICR mediated by fluoroalcohols was found to proceed more effectively. The resulting complex ortho-allyl iodoarenes are useful synthetic intermediates and can be readily converted to various heterocyclic compounds.

Keywords hypervalent iodine      allylation      fluoroalcohol      Claisen rearrangement      heterocycles     
Corresponding Author(s): Jianglong Zhu   
Online First Date: 10 September 2015    Issue Date: 30 September 2015
 Cite this article:   
James K. Dunaway,Jianglong Zhu,Hem Raj Khatri, et al. Fluoroalcohol-mediated reductive iodonio-Claisen rearrangement: Synthesis of complex ortho-substituted-allyl iodoarenes? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 359-368.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1530-6
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I3/359
Fig.1  Scheme 1 Synthesis of ortho-allyl or substituted-allyl iodoarenes via reductive iodonio-Claisen rearrangement
Entry Promoter Solventa) 8 : 9 : 10b) Yield of 8c)
1 BF3·Et2O CH2Cl2/CH3CN (1/1, v/v), −50 °Cd) 2.22/0.45/1.0 N.D.
2 BF3·Et2O CH2Cl2, −80 °Cd) 0.5/0.09/1.0 N.D.
3 BF3·Et2O CH2Cl2, −25 °Cd) 0.78/0.23/1.0 N.D.
4 None HFIP, 0 °Ce) 1.85/0.53/1.0 N.D.
5 None HFIP/CH2Cl2(1/1, v/v), −20 °Cf) 1.0/0.32/1.0 N.D.
6 None TFE, −40 °Ce) 4.76/1.57/1.0 60%
Tab.1  Reaction optimization for the synthesis of ortho-methallyliodoarene 8
Fig.3  Scheme 2 RICRs involving complex λ3-iodanes and methallyltrimethylsilane in fluoroalcohol
Fig.4  Scheme 3 RICRs involving complex λ3-iodanes and prenyltrimethylsilane or crotylsilanes in HFIP
Entry λ3-iodanes Reaction conditions
HFIP, 0 °C????? TFE, ?40 °C??????
2 : 20 : 10 b) Yield c) 2 : 20 : 10 b) Yieldc)
1 1a 9.0 : 4.0 : 1.0 77 % (53%) 13 : 4.1 : 1.0 88 % (67%)
2 1b 11.3 : 0.0 : 1.0 (77%) 20 : 0.0 : 1.0 (90%)
3 1c 4.34 : 0.65 : 1.0 66 % (57%) 4.76 : 1.52 : 1.0 78 % (59%)
4 1d 7.5 : trace : 1.0 (71%) 4.0 : trace : 1.0 (70%)
5 1e 19.4 : trace : 1.0 (82%) 20 : trace : 1.0 (88%)
6 1f 11.75 : 0.0 : 1.0 (74%) 6.0 : 0.0 : 1.0 (75%)
7 1g 4.34 : 0.0 : 1.0 (80%) 4.4 : 0.0 : 1.0 (73%)
Tab.2  Reinvestigation of RICR involving allyltrimethylsilane in fluoroalcoholsa)
Fig.6  Scheme 4 Synthesis of various heterocycles from o-allyliodoarenes. (a) 1.25 mol-% OsO4, K3[Fe(CN)6], K2CO3, tBuOH/H2O. (b) TBDPSCl, imidazole, DMF. (c) 10 mol-% Pd(OAc)2, 12 mol-% rac-2-(di-t-butylphosphino)-1,1'-binaphthyl, Cs2CO3, toluene. (d) PhCH(OMe)2, 10 mol-% p-TsOH, benzene. (e) DIBAL-H, CH2Cl2, −78 to 0 °C. (f) NaIO4, THF/H2O. (g) BnNH2, HOAc, NaBH(OAc)3, EtOH. (h) 5 mol-% CuI, 20 mol-% 2-isobutyrylcyclohexanone, DMF. (i) 1.25 mol-% OsO4, NaIO4, THF/H2O. (j) 10 mol-% CuI, K3PO4, DMF
1 Stang  P J, Zhdankin  V V. Organic polyvalent iodine compounds. Chemical Reviews, 1996, 96(3): 1123–1178
2 Zhdankin  V V, Stang  P J. Recent developments in the chemistry of polyvalent iodine compounds. Chemical Reviews, 2002, 102(7): 2523–2584
3 Zhdankin  V V, Stang  P J. Chemistry of polyvalent iodine. Chemical Reviews, 2008, 108(12): 5299–5358
4 Ochiai  M. Hypervalent halogans and their reactions in organic synthesis. Yakugaku Zasshi. Journal of the Pharmaceutical Society of Japan, 2009, 129(3): 321–334
5 Zhdankin  V V. Hypervalent iodine (III) reagents in organic synthesis. ARKIVOC, 2009, 1(1): 1–62
6 Merritt  E A, Olofsson  B. α-Functionalization of carbonyl compounds using hypervalent iodine reagents. Synthesis (Stuttgart), 2011, 4: 517–538
7 Silva  L F Jr, Olofsson  B. Hypervalent iodine reagents in the total synthesis of natural products. Natural Product Reports, 2011, 28(10): 1722–1754
8 Duschek  A, Kirsch  S F. 2‐Iodoxybenzoic acid—a simple oxidant with a dazzling array of potential applications. Angewandte Chemie International Edition, 2011, 50(7): 1524–1552
9 Duschek  A, Kirsch  S. For an overview of IBX-mediated oxidations. Angewandte Chemie, 2011, 123: 1562–1590
10 Ochiai  M, Ito  T, Takaoka  Y, Masaki  Y. Generation of allenyliodinanes and their reductive iodonio-Claisen rearrangement. Journal of the American Chemical Society, 1991, 113(4): 1319–1323
11 Ochiai  M, Ito  T, Masaki  Y. Ipso selectivity in the reductive iodonio-Claisen rearrangement of allenyl(p-methoxyaryl)iodinanes. Journal of the Chemical Society. Chemical Communications, 1992, (1): 15–16
12 Ochiai  M, Ito  T. Solvent effects on ipso versus ortho selectivity in the reductive iodonio-Claisen rearrangement of allenyl (p-methoxyphenyl) iodane. Journal of Organic Chemistry, 1995, 60(7): 2274–2275
13 Ochiai  M, Kida  M, Okuyama  T. On the mechanism of nucleophilic substitution of allenyl (aryl) iodine (III): Formation of propargyl cation and competition with Sigmatropic rearrangement. Tetrahedron Letters, 1998, 39(34): 6207–6210
14 Gately  D A, Luther  T A, Norton  J R, Miller  M M, Anderson  O P. Reaction of μ-oxobis [(trifluoromethanesulfonato)(phenyl) iodine (III)] with group 14 propargyl derivatives and a propargyl ether. Journal of Organic Chemistry, 1992, 57(24): 6496–6502
15 Lee  K, Kim  D Y, Oh  D Y. Reaction of allyltrimethylsilane with an aromatic compound using hypervalent organoiodine compound: A new allylation of aromatic compounds. Tetrahedron Letters, 1988, 29(6): 667–668
16 Van De Water  R W, Hoarau  C, Pettus  T R R. Oxidative dearomatization of resorcinol derivatives: Useful conditions leading to valuable cyclohexa-2,5-dienones. Tetrahedron Letters, 2003, 44(27): 5109–5113
17 Zhu  J, Germain  A R, Porco  J A. Synthesis of azaphilones and related molecules by employing cycloisomerization of O-alkynylbenzaldehydes. Angewandte Chemie International, 2004, 43(10): 1239–1243
18 Jia  Z, Galvez  E, Sebastian  R M, Pleixats  R, Alvarez-Larena  A, Martin  E, Vallribera  A, Shafir  A. An alternative to the classical alpha-arylation: The transfer of an intact 2-iodoaryl from ArI(O2CCF3)2. Angewandte Chemie International Edition, 2014, 53(42): 11298–11301
19 Khatri  H R, Zhu  J. Synthesis of complex ortho-allyliodoarenes employing reductive iodonio-Claisen rearrangement. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(39): 12232–12236
20 Nguyen  H, Khatri  H R, Zhu  J. Reductive iodonio-Claisen rearrangement of iodothiophene diacetates with allylsilanes: Formal synthesis of Plavix®. Tetrahedron Letters, 2013, 54(40): 5464–5466
21 Bonnet-Delpon  D, Bégué  J P, Crousse  B. Fluorinated alcohols: A new medium  for  selective and clean reaction.  Synlett,  2004,  (1): 18–29
22 Dohi  T, Yamaoka  N, Kita  Y. Fluoroalcohols: Versatile solvents in hypervalent iodine chemistry and syntheses of diaryliodonium(III) salts. Tetrahedron, 2010, 66(31): 5775–5785
23 Kita  Y, Yakura  T, Tohma  H, Kikuchi  K, Tamura  Y. A synthetic approach to discorhabdin alkaloids: Hypervalent iodine oxidation of p-substituted phenol derivatives to azacarbocyclic spirodienones. Tetrahedron Letters, 1989, 30(9): 1119–1120
24 Kita  Y, Tohma  H, Kikuchi  K, Inagaki  M, Yakura  T. Hypervalent iodine oxidation of N-acyltyramines: Synthesis of quinol ethers, spirohexadienones, and hexahydroindol-6-ones. Journal of Organic Chemistry, 1991, 56(1): 435–438
25 Kita  Y, Tohma  H, Inagaki  M, Hatanaka  K, Kikuchi  K, Yakura  T. Hypervalent iodine oxidation of O-silylated phenol derivatives to azacarbocyclic spirodienones; Synthetic approach to the anticancer marine alkaloid, Discorhabdin C. Tetrahedron Letters, 1991, 32(18): 2035–2038
26 Kita  Y, Tohma  H, Inagaki  M, Hatanaka  K, Yakura  T. Total synthesis of discorhabdin C: A general aza spiro dienone formation from O-silylated phenol derivatives using a hypervalent iodine reagent. Journal of the American Chemical Society, 1992, 114(6): 2175–2180
27 Kita  Y, Arisawa  M, Gyoten  M, Nakajima  M, Hamada  R, Tohma  H, Takada  T. Oxidative intramolecular phenolic coupling reaction induced by a hypervalent iodine (III) reagent: Leading to galanthamine-type amaryllidaceae alkaloids. Journal of Organic Chemistry, 1998, 63(19): 6625–6633
28 Tohma  H, Harayama  Y, Hashizume  M, Iwata  M, Kiyono  Y, Egi  M, Kita  Y. The first total synthesis of Discorhabdin A. Journal of the American Chemical Society, 2003, 125(37): 11235–11240
29 Kita  Y, Tohma  H, Hatanaka  K, Takada  T, Fujita  S, Mitoh  S, Sakurai  H, Oka  S. Hypervalent iodine-induced nucleophilic substitution of para-substituted phenol ethers. Generation of cation radicals as reactive intermediates. Journal of the American Chemical Society, 1994, 116(9): 3684–3691
30 Kita  Y, Takada  T, Mihara  S, Whelan  B A, Tohma  H. Novel and direct nucleophilic sulfenylation and thiocyanation of phenol ethers using a hypervalent iodine (III) reagent. Journal of Organic Chemistry, 1995, 60(22): 7144–7148
31 Dohi  T, Ito  M, Morimoto  K, Minamitsuji  Y, Takenaga  N, Kita  Y. Versatile direct dehydrative approach for diaryliodonium (III) salts in fluoroalcohol media. Chemical Communications, 2007, 40(40): 4152–4154
32 Schadt  F L, Bentley  T W, Schleyer  P R. The SN2-SN1 spectrum. 2. Quantitative treatments of nucleophilic solvent assistance. A Scale of solvent nucleophilicities. Journal of the American Chemical Society, 1976, 98(24): 7667–7675
33 Kuwabe  S, Torraca  K E, Buchwald  S L. Palladium-catalyzed intramolecular C–O bond formation. Journal of the American Chemical Society, 2001, 123(49): 12202–12206
34 Shafir  A, Buchwald  S L. Highly selective room-temperature copper-catalyzed C−N coupling reactions. Journal of the American Chemical Society, 2006, 128(27): 8742–8743
35 Che  C Y, Dormer  P G. Synthesis of benzo [b] furans via CuI-catalyzed ring closure. Journal of Organic Chemistry, 2005, 70(17): 6964–6967
[1] Ximei Zhao, Matthias Rudolph, Abdullah M. Asiri, A. Stephen K. Hashmi. Easy access to pharmaceutically relevant heterocycles by catalytic reactions involving α-imino gold carbene intermediates[J]. Front. Chem. Sci. Eng., 2020, 14(3): 317-349.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed