Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (3) : 376-380    https://doi.org/10.1007/s11705-015-1531-5
RESEARCH ARTICLE
High-level expression of recombinant IgG1 by CHO K1 platform
Ningning Xu1,Jianfa Ou1,Al-Karim (Al) Gilani1,Lufang Zhou2,*(),Margaret Liu1
1. Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35294, USA
2. Departments of Medicine and Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
 Download: PDF(382 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Chinese Hamster Ovary (CHO K1) cell was used to express a targeted anti-cancer monoclonal antibody by optimizing the platform of the construction of production cell line in this study. The adherent CHO K1 was first adapted to suspension culture in chemical defined medium. Then the glutamine synthetase (GS) vector was applied to construct a single plasmid to overexpress a monoclonal antibody IgG1. Post transfection, the production of cell pool was optimized by glutamine-free selection and amplification using various concentrations of methionine sulfoximine. The best cell pool of CHO K1/IgG1 was used to screen the top single clone using the limiting dilution cloning. Finally, a high IgG1 production of 780 mg/L was obtained from a batch culture. This study demonstrated that the construction of high producing cell line, from gene to clone, could be completed within six month and the gene amplification improved protein production greatly.

Keywords Chinese hamster ovary (CHO)      monoclonal antibody      IgG1      amplification      cell line development     
Corresponding Author(s): Lufang Zhou   
Online First Date: 24 September 2015    Issue Date: 30 September 2015
 Cite this article:   
Ningning Xu,Jianfa Ou,Al-Karim (Al) Gilani, et al. High-level expression of recombinant IgG1 by CHO K1 platform[J]. Front. Chem. Sci. Eng., 2015, 9(3): 376-380.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1531-5
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I3/376
Fig.1  pEE-IgG plasmid construction (left). hCMV-MIE: human cytomeg-alovirus major immediate-early enhancer and promoter; SV40 ori: SV40 origin of replication; GS: glutamine synthetase. Plasmid analysis by DNA gel electrophoresis (right). Lane 1: DNA marker; Lane 2: pEE-IgG
Fig.2  Cell growth kinetics of CHO K1/IgG cell pool
Fig.3  IgG Production of top 6 clones in shaker flask batch culture
1 Leone-Bay  A. Next-generation protein therapeutics summit conference report. Therapeutic Delivery, 2011, 2(10): 1233–1234
2 Leader  B, Baca  Q J, Golan  D E. Protein therapeutics: A summary and pharmacological classification. National Review, 2008, 7(1): 21–39
3 Zhou  L, Xu  N, Sun  Y, Liu  X M. Targeted biopharmaceuticals for cancer treatment. Cancer Letters, 2014, 352(2): 145–151
4 Edelman  G M. Antibody structure and molecular immunology. Science, 1973, 180(4088): 830–840
5 Chames  P, Regenmortel  M V, Weiss  E, Baty  D. Therapeutic antibodies: Successes, limitations and hopes for the future. British Journal of Pharmacology, 2009, 157: 220–233
6 Butler  M, Spearman  M. The choice of mammalian cell host and possibilities for glycosylation engineering. Current Opinion in Biotechnology, 2014, 30: 107–112
7 Zhang  P, Chan  K F, Haryadi  R, Bardor  M, Song  Z. CHO glycosylation mutants as potential host cells to produce therapeutic proteins with enhanced efficacy. Advances in Biochemical Engineering/Biotechnology, 2013, 131: 63–87
8 Lai  T, Yang  Y, Ng  S K. Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals, 2013, 6(5): 579–603
9 Omasa  T, Onitsuka  M, Kim  W D. Cell engineering and cultivation of Chinese Hamster Ovary (CHO) cells. Current Pharmaceutical Biotechnology, 2010, 11(3): 233–240
10 Lewis  N E, Liu  X, Li  Y, Nagarajan  H, Yerganian  G, O’Brien  E, Bordbar  A, Roth  A M, Rosenbloom  J, Bian  C, Xie  M, Chen  W, Li  N, Baycin-Hizal  D, Latif  H, Forster  J, Betenbaugh  M J, Famili  I, Xu  X, Wang  J, Palsson  B O. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nature Biotechnology, 2013, 31(8): 759–765
11 Florian  M. Wurm. CHO quasispecies—Implications for manufacturing processes. Processes, 2013, 1: 296–311
12 Cruz Edmonds  M C, Tellers  M, Chan  C, Salmon  P, Robinson  D K, Markusen  J. Development of transfection and high-producer screening protocols for the CHOK1SV cell system. Molecular Biotechnology, 2006, 34(2): 179–190
13 Xu  X, Nagarajan  H, Lewis  N E, Pan  S, Cai  Z, Liu  X, Chen  W, Xie  M, Wang  W, Hammond  S, Andersen  M R, Neff  N, Passarelli  B, Koh  W, Fan  H C, Wang  J, Gui  Y, Lee  K H, Betenbaugh  M J, Quake  S R, Famili  I, Palsson  B O, Wang  J. The genomic sequence of the Chinese Hamster Ovary (CHO)-K1 cell line. Nature Biotechnology, 2011, 29(8): 735–741
14 Jerums  M, Yang  X. Optimization of cell culture media. BioProcess International, 2005, Supplement: 38–44
15 Dale  L L. Mammalian expression cassette engineering for high-level protein production. BioProcess International, 2006, 4(5): 14–23
16 Kingston  R E, Kaufman  R J, Bebbington  C R, Rolfe  M R. Amplification using CHO cell expression vectors. Current Protocols in Molecular Biology. Hoboken: John Wiley & Sons, 2002
17 Porter  AJ, Dickson  AJ, Racher  AJ. Strategies for selecting recombinant CHO cell lines for cGMP manufacturing. Realizing the potential in bioreactors. Biotechnology Progress, 2010, 26(5): 1446–14554
18 Harraghy  N, Regamey  A, Girod  P A, Mermod  N. Using matrix attachment regions to improve recombinant protein production. Methods in Molecular Biology, 2012, 801: 93–110
19 Hou  J J, Hughes  B S, Smede  M, Leung  K M, Levine  K, Rigby  S, Gray  P P, Munro  T P. High-throughput ClonePix FL analysis of mAb-expressing clones using the UCOE expression system. New Biotechnology, 2014, 31(3): 214–220
20 Nair  A R, Jinger  X, Hermiston  T W. Effect of different UCOE-promoter combinations in creation of engineered cell lines for the production of Factor VIII. BMC Research Notes, 2011, 4(178): 1–8
21 Lequin  R. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clinical Chemistry, 2005, 51(12): 2415–2418
22 Meng  Y G, Liang  J, Wong  W L, Chisholm  V. Green fluorescent protein as a second selectable marker for selection of high producing clones from transfected CHO cells. Gene, 2000, 242: 201–207
23 Clarke  J, Porter  A, Davis  J M. Cloning. Animal cell culture. New York: John Wiley & Sons, 2011, 231–254
[1] Pengwei Zhang, Junxiao Ye, Ergang Liu, Lu Sun, Jiacheng Zhang, Seung Jin Lee, Junbo Gong, Huining He, Victor C. Yang. Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer[J]. Front. Chem. Sci. Eng., 2017, 11(4): 529-536.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed