Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (3) : 381-385    https://doi.org/10.1007/s11705-015-1534-2
RESEARCH ARTICLE
Use of dry yeast cells as a cheap nitrogen source for lactic acid production by thermophilic Bacillus coagulans WCP10-4? ?
Kim Yng Ooi,Jin Chuan Wu()
Institute of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Jurong Island, 627833, Singapore
 Download: PDF(206 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dry yeast cells (DYC) were used as a cheap nitrogen source to replace expensive yeast extract (YE) for L-lactic acid production by thermophilic Bacillus coagulans. Cassava starch (200 g·L−1) was converted to L-lactic acid by simultaneous saccharification and fermentation using Bacillus coagulans WCP10-4 at 50 °C in the presence of 20 g·L−1 of DYC, giving 148.1 g·L−1 of L-lactic acid at 27 h with a productivity of 5.5 g·L−1·h−1 and a yield of 92%. In contrast, 154.4 g·L−1 of lactic acid was produced at 24 h with a productivity of 6.4 g·L−1·h−1 and a yield of 96% when equal amount of YE was used under the same conditions. Use of pre-autolyzed DYC at 50 °C for overnight slightly improved the lactic acid titer (154.5 g·L−1) and productivity (7.7 g·L−1·h−1) but gave the same yield (96%).

Keywords L-lactic acid      thermophilic strain      Bacillus coagulans      dry yeast cells      autolysis      fermentation     
Corresponding Author(s): Jin Chuan Wu   
Online First Date: 24 September 2015    Issue Date: 30 September 2015
 Cite this article:   
Kim Yng Ooi,Jin Chuan Wu. Use of dry yeast cells as a cheap nitrogen source for lactic acid production by thermophilic Bacillus coagulans WCP10-4? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 381-385.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1534-2
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I3/381
Composition Yeast extract b) Autolysate of DYC c)
Total proteins 50%?75 % 50%?69 %
Total nitrogen 8%?12 % 8%?11 %
Total carbohydrates 4%?13 % 15%?25 %
Total lipids 3%?10 %
Tab.1  Compositions of YE and autolysate of DYC a)
Fig.1  Lactic acid production by B. coagulans WCP10-4 from glucose using YE as nitrogen source
Fig.2  Lactic acid production by B. coagulans WCP10-4 on glucose using DYC to replace YE
Fig.3  Lactic acid production by B. coagulans WCP10-4 from cassava starch using YE as nitrogen source
Fig.4  Lactic acid production by B. coagulans WCP10-4 from cassava starch using DYC as nitrogen source
Fig.5  Lactic acid production by B. coagulans WCP10-4 from cassava starch using autolysate of DYC as nitrogen source
1 Ye  L D, Hudari  M S B, Li  Z, Wu  J C. Simultaneous detoxification, saccharification and fermentation of acid hydrolysate of oil palm empty fruit bunch to L-lactic acid by Bacillus coagulans JI12. Biochemical Engineering Journal, 2014, 83: 16–21
2 Ye  L D, Zhou  X D, Hudari  M S B, Zhang  D X, Li  Z, Wu  J C. Efficient conversion of acid hydrolysate of oil palm empty fruit bunch to L-lactic acid by newly isolated Bacillus coagulans JL12. Applied Microbiology and Biotechnology, 2013, 97: 4831–4838
3 Zhou  X D, Ye  L D, Wu  J C. Production of L-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance. Applied Microbiology and Biotechnology, 2013, 97(10): 4309–4314
4 Ye  L D, Zhao  H, Li  Z, Wu  J C. Significantly improved acid tolerance of Lactobacillus pentosus by error-prone whole genome amplification. Bioresource Technology, 2013, 135: 459–463
5 Ye  L D, Zhou  X D, Hudari  M S B, Li  Z, Wu  J C. Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106. Bioresource Technology, 2013, 132: 38–44
6 Patel  M A, Ou  M S, Harbrucker  R, Aldrich  H C, Buszko  M L, Ingram  L O, Shanmugam  K T. Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Applied and Environmental Microbiology, 2006, 72: 3228–3235
7 Tejayadi  S, Cheryan  M. Lactic acid production from cheese whey permeate. Productivity and economics of continuous membrane bioreactor. Applied Microbiology and Biotechnology, 1995, 43: 242–248
8 Neklyudov  A D, Fedorova  N V, Ilyukhina  V P, Lisitsa  E P. Enzyme profile of autolyzing yeasts of the genus Saccharomyces.  Applied Biochemistry and Microbiology, 1993, 29: 547–554
9 Kwon  S, Lee  P C, Lee  E G, Chang  Y K, Chang  N. Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme and Microbial Technology, 2000, 26: 209–215
10 Li  Z, Ding  S, Li  Z, Tan  T. L-lactic acid production by Lactobacillus casei fermentation with corn steep liquor-supplemented acid-hydrolysate of soybean meal. Biotechnology Journal, 2006, 1: 1453–1458
11 Altaf  M, Venkateshwar  M, Srijana  M, Reddy  G. An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources. Journal of Applied Microbiology, 2007, 103: 372–380
12 Ma  K, Maeda  T, You  H, Shirai  Y. Open fermentative production of L-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient. Bioresource Technology, 2014, 151: 28–35
13 Hisao  K, Takumi  S, Fujio  K, Masaki  K U S. Patent, 6051212A, 2000-<month>04</month>-<day>18</day>
14 Ferreira  I M P L V O, Pinho  O, Vieira  E, Tavarela  J G. Brewer’s saccharomyces yeast biomass: Characteristics and potential applications. Trends in Food Science & Technology, 2010, 21: 77–84
15 Deesuth  O, Laopaiboon  P, Klanrit  P, Laopaiboon  L. Improvement of ethanol production from sweet sorghum juice under high gravity and very high gravity conditions: Effects of nutrient supplementation and aeration. Industrial Crops and Products, 2015, 74: 95–102
16 Tanguler  H, Erten  H. The effect of different temperatures on autolysis of baker’s yeast for the production of yeast extract. Turkish Journal of Agriculture and Forestry, 2009, 33, 149–154
17 Altaf  M, Naveena  B J, Reddy  G. Production of L-(+)-lactic acid from starch by L. amylophilus GV6. Food Technology and Biotechnology, 2005, 43(3): 235–239
18 Champagne  C P, Gaudreau  H, Conway  J. Effect of the production or use of mixtures of bakers’ or brewers’ yeast extracts on their ability to promote growth of lactobacilli and pediococci. Electronic Journal of Biotechnology, 2003, 6(3): 185–197
19 Ghosh  U K, Ghosh  M K. Utilization of wheat bran as bed material in solid state bacterial production of lactic acid with various nitrogen sources. World Academy of Science. Engineering and Technology, 2012, 6: 568–571
20 Boonraeng  S, Foo-trakul  P, Kanlayakrit  W, Chetanachitra  C. Effects of chemical, biochemical and physical treatments on the kinetics and on the role of some endogenous enzymes action of baker’s yeast lysis for food-grade yeast extract production. Kasetsart Journal: Natural Science, 2000, 34: 270–278
21 Robbins,  US Patent, 4122196, 1978-<month>10</month>-<day>24</day>
22 Peppler  H J. Yeast extracts. In: Rose  A H ed. Fermented Foods. London: Academic Press, 1982, 293–312
23 Selmer-olsen  E, Sorhaug  T. Comparative studies of the growth of Lactobacillus plantarum in whey supplemented with autolysate from brewery yeast biomass or commercial yeast extract. Journal of Milchwissenschaft, 1998, 53(7): 367–370
24 Mili  T V, Rakin  M, Iler-Marinkovi  S. Utilization of baker’s yeast (Saccharomyces cerevisiae) for the production of yeast extract: Effects of different enzymatic treatments on solid, protein and carbohydrate recovery. Journal of the Serbian Chemical Society, 2007, 72: 451–457
25 Juturu  V, Wu  J C. Microbial production of lactic acid: The latest development. Critical Reviews in Biotechnology
https://doi.org/10.3109/07388551.2015.1066305
[1] Qing Li, Yingjie Qin, Yunfei Liu, Jianjun Liu, Qing Liu, Pingli Li, Liqiang Liu. Detoxification and concentration of corn stover hydrolysate and its fermentation for ethanol production[J]. Front. Chem. Sci. Eng., 2019, 13(1): 140-151.
[2] Chao Ma,Jianfa Ou,Matthew Miller,Sarah McFann,Xiaoguang (Margaret) Liu. High production of butyric acid by Clostridium tyrobutyricum mutant? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 369-375.
[3] Soumya Pandit, Balachandar G, Debabrata Das. Improved energy recovery from dark fermented cane molasses using microbial fuel cells[J]. Front Chem Sci Eng, 2014, 8(1): 43-54.
[4] Yumei WANG, Wei LIU, Jie BAO. Repeated batch fermentation with water recycling and cell separation for microbial lipid production[J]. Front Chem Sci Eng, 2012, 6(4): 453-460.
[5] Tian WANG, Shiru JIA, Zhilei TAN, Yujie DAI, Shuai SONG, Guoliang WANG. Mutagenesis and selective breeding of a high producing ?-poly-L-lysine strain[J]. Front Chem Sci Eng, 2012, 6(2): 179-183.
[6] Qian LIU, Yongsong CHENG, Qingyang XU, Xixian XIE, Ning CHEN. Effects of aroP gene disruption on L-tryptophan fermentation[J]. Front Chem Sci Eng, 2012, 6(2): 158-162.
[7] Jian ZHANG, Xin REN, Wenqun CHEN, Jie BAO. Biological pretreatment of corn stover by solid state fermentation of Phanerochaete chrysosporium[J]. Front Chem Sci Eng, 2012, 6(2): 146-151.
[8] Yinxiu CAO, Hongchi TIAN, Kun YAO, Yingjin YUAN. Simultaneous saccharification and fermentation of sweet potato powder for the production of ethanol under conditions of very high gravity[J]. Front Chem Sci Eng, 2011, 5(3): 318-324.
[9] Xiaojuan NIU, Shuyi QIU, Yuangen WU, Jie YUAN, Yingying XU. Highly effective extraction of oil from soybean by pretreatment of solid-state fermentation with fungi[J]. Front Chem Sci Eng, 2011, 5(1): 122-125.
[10] K. Manikandan, T. Viruthagiri. Simultaneous saccharification and fermentation of wheat bran flour into ethanol using coculture of amylotic Aspergillus niger and thermotolerant Kluyveromyces marxianus[J]. Front Chem Eng Chin, 2009, 3(3): 240-249.
[11] LUO Peng, YANG Chuanmin, LIU Zhong, WANG Gaosheng. Study of simultaneous saccharification and fermentation for steam exploded wheat straw to ethanol [J]. Front. Chem. Sci. Eng., 2008, 2(4): 447-451.
[12] JIN Mingjie, HUANG He, ZHANG Kun, YAN Jie, GAO Zhen. Metabolic flux analysis on arachidonic acid fermentation[J]. Front. Chem. Sci. Eng., 2007, 1(4): 421-426.
[13] GAO Sujun, SUN Yaqin, XIU Zhilong. Separation of 1,3-propanediol from glycerol-based fermentations of Klebsiella pneumoniae by alcohol precipitation and dilution crystallization[J]. Front. Chem. Sci. Eng., 2007, 1(2): 202-207.
[14] FU Xiaoguo, CHEN Hongzhang, LI Hongqiang, MA Runyu. Study on microbial protein and the mechanism of solid-state fermentation with periodical dynamic changes of air[J]. Front. Chem. Sci. Eng., 2007, 1(2): 113-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed