Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (3) : 336-348    https://doi.org/10.1007/s11705-015-1535-1
RESEARCH ARTICLE
HDS of dibenzothiophenes and hydrogenation of tetralin over a SiO2 supported Ni-Mo-S catalyst? ?
Qiang Wei1,Jinwen Chen1,*(),Chaojie Song2,Guangchun Li2
1. Natural Resources Canada, CanmetENERGY-Devon, One Oil Patch Drive, Devon, AB, T9G IA8, Canada
2. Energy, Mining & Environment, National Research Council Canada, 4250 westbrook Mall, Vancouver, BC, V6J 1W5, Canada
 Download: PDF(1041 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A one-step synthesized Ni-Mo-S catalyst supported on SiO2 was prepared and used for hydrodesulphurization (HDS) of dibenzothiophene (DBT), and 4,6-dimethyl-dibenzothiophene (4,6-DMDBT), and for hydrogenation of tetralin. The catalyst showed relatively high HDS activity with complete conversion of DBT and 4,6-DMDBT at temperature of 280 °C and a constant pressure of 435 psi. The HDS conversions of DBT and 4,6-DMDBT increased with increasing temperature and pressure, and decreasing liquid hourly space velocity (LHSV). The HDS of DBT proceeded mostly through the direct desulphurization (DDS) pathway whereas that of 4,6-DMDBT occurred mainly through the hydrogenation-desulphurization (HYD) pathway. Although the catalyst showed up to 24% hydrogenation/dehydrogenation conversion of tetralin, it had low conversion and selectivity for ring opening and contraction due to the competitive adsorption of DBT and 4,6-DMDBT and insufficient acidic sites on the catalyst surface.

Keywords hydrodesulphurization (HDS)      hydrogenation      dibenzothiophene (DBT)      4,6-dimethyldibenzothiophene (4,6-DMDBT)      tetralin     
Corresponding Author(s): Jinwen Chen   
Online First Date: 24 September 2015    Issue Date: 30 September 2015
 Cite this article:   
Qiang Wei,Jinwen Chen,Chaojie Song, et al. HDS of dibenzothiophenes and hydrogenation of tetralin over a SiO2 supported Ni-Mo-S catalyst? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 336-348.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1535-1
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I3/336
Fig.1  HDS and hydrogenation mechanisms for (a) DBT [18], (b) 4,6-DMDBT [16] and (c) tetralin [35]
Fig.2  Nitrogen adsorption-desorption isotherm of the Ni-Mo-S catalyst
Fig.3  Pore size distribution of the Ni-Mo-S catalyst
Fig.4  Catalyst stability at different reaction temperatures (P = 435 psi, LHSV= 1.5 h−1, H2/oil= 600 NL·L−1)
Fig.5  DBT conversion and selectivity as a function of temperature: (a) P= 435 psi; (b) P= 725 psi (LHSV= 1.5 h−1, H2/oil= 600 NL·L−1)
Fig.6  DBT conversion and selectivity as functions of LHSV (T = 240 °C, P = 435 psi, H2/oil= 600 NL·L−1)
Fig.7  4,6-DMDBT conversion and selectivity as functions of temperature: (a) P = 435 psi; (b) P = 725 psi (LHSV= 1.5 h−1, H2/oil= 600 NL·L−1)
Fig.8  4,6-DMDBT conversion and selectivity as a function of LHSV (T = 240 °C, P = 435 psi, H2/oil= 600 NL·L−1)
Fig.9  GC×GC-MS analysis of (a) feedstock, (b) product obtained at T = 330 °C, P = 725 psi, LHSV=1.5 h−1, H2/oil= 600 NL·L−1.
Product selectivity Reaction temperature /°C
310 320 330 340
Tetralin conversion /% 17.4 17.9 20.9 23.6
Dehydrogenation to naphthalene /% 0.4 0.6 0.8 1.2
Dehydrogenation selectivity /% 4.4 7.0 8.4 11.0
Hydrogenation satHYPs (trans-Decalin) /% 5.7 5.4 6.2 7.1
satHYPs (cis-Decalin) /% 2.0 1.9 2.4 2.4
Hydrogenation selectivity /% 92.9 90.1 89.0 87.6
Ring opening and contraction (ROC) aroROPs (n-butyl-benzene) /wppm 65 57 94 236
aroROPs selectivity /% 0.1 0.1 0.1 0.2
aroRCPs (methyl-indane) /wppm 37 42 77 230
aroRCPs selectivity /% 0.0 0.0 0.1 0.2
satRCPs (1,1'-bicyclopentyl) /% 0.2 0.2 0.2 0.1
satRCPs selectivity /% 2.7 2.7 2.4 0.9
Total ROC selectivity /% 2.8 2.8 2.6 1.3
Tab.1  Product yield and reaction selectivity of tetralin hydrotreating (310?340 °C, 725 psi, 1.5 h−1, and 600 H2/oil (v·v−1))
Product selectivity Reaction temperature /°C
240 260 280 300 320
Tetralin conversion /% 2.3 3.2 3.9 8.1 9.6
Dehydrogenation to naphthalene /% 0.1 0.1 0.3 0.6 1.6
Dehydrogenation selectivity /% 7.3 9.2 14.8 16.8 35.2
Hydrogenation satHYPs (trans-decalin) /% 0.6 0.9 1.0 2.2 2.1
satHYPs (cis-decalin) /% 0.3 0.3 0.4 0.7 0.7
Hydrogenation selectivity /% 81.5 82.7 79.2 80.0 62.1
Ring opening and contraction (ROC) aroROPs (n-butyl-benzene) /wppm 9 0 0 16 44
aroROPs selectivity /% 0.0 0.0 0.0 0.0 0.1
aroRCPs (methyl-indane) /ppm 5 2 5 17 48
aroRCPs selectivity /% 0.0 0.0 0.0 0.1 0.1
satRCPs (1,1'-bicyclopentyl) /% 0.1 0.1 0.1 0.1 0.1
satRCPs selectivity /% 11.1 8.1 6.1 3.2 2.5
Total ROC selectivity /% 11.2 8.1 6.2 3.3 2.7
Tab.2  Product yield and reaction selectivity of tetralin hydrotreating (240?320 °C, 435 psi, 1.5 h−1, and 600 H2/oil (v·v−1))
Product selectivity Operating pressure /psi
300 435 725
Tetralin conversion /% 2.0 2.3 4.3
Dehydrogenation to naphthalene /% 0.1 0.1 0.0
Dehydrogenation selectivity /% 11.8 7.3 2.5
Hydrogenation satHYPs (trans-decalin) /% 0.5 0.6 1.3
satHYPs (cis-decalin) /% 0.2 0.3 0.5
Hydrogenation selectivity /% 74.9 81.5 89.9
Ring opening and contraction (ROC) aroROPs (n-butyl-Benzene) /wppm 5 9 0
aroROPs selectivity /% 0.1 0.1 0
aroRCPs (methyl-indane) /wppm 4 5 7
aroRCPs selectivity /% 0.0 0.1 0.0
satRCPs (1,1'-Bicyclopentyl) /% 0.1 0.1 0.2
satRCPs selectivity /% 13.2 11.1 7.6
Total ROC selectivity /% 13.3 11.2 7.7
Tab.3  Product yield and reaction selectivity of tetralin hydrotreating (300?725 psi, 240 °C, 1.5 h−1, and 600 H2/oil (v·v−1))
1 Song  C. An overview of new approaches to deep desulphurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today, 2003, 86: 211–263
2 Breysse  M, Djega-Mariadassou  G, Pessayre  S, Geantet  C, Vrinat  M, Pérot  G, Lemaire  M. Deep desulphurization: Reactions, catalysts and technological challenges. Catalysis Today, 2003, 84: 129–138
3 Saih  Y, Segawa  K. Tailoring of alumina surfaces as supports for NiMo sulfide catalysts in the ultra deep hydrodesulphurization of gas oil: Case study of TiO2-coated alumina prepared by chemical vapor deposition technique. Catalysis Today, 2003, 86: 61–72
4 Laurenti  D, Phung-Ngoc  B, Roukoss  C, Devers  E, Marchand  K, Massin  L, Lemaitre  L, Legens  C, Quoineaud  A A, Vrinat  M. Intrinsic potential of alumina-supported CoMo catalysts in HDS: Comparison between γc, γT, and δ-alumina. Journal of Catalysis, 2013, 297: 165–175
5 Klimova  T, Vara  P M, Lee  I P. Development of new NiMo/γ-alumina catalysts doped with noble metals for deep HDS. Catalysis Today, 2010, 150: 171–178
6 Trejo  F, Rana  M, Ancheyta  J. CoMo/MgO-Al2O3 supported catalysts: An alternative approach to prepare HDS catalysts. Catalysis Today, 2008, 130: 327–336
7 Li  H, Li  M, Chu  Y, Liu  F, Nie  H. Essential role of citric acid in preparation of efficient NiW/Al2O3 HDS catalysts. Applied Catalysis A, General, 2011, 403: 75–82
8 Thomazeau  C, Geantet  C, Lacroix  M, Danot  M, Harlé  V, Raybaud  P. Predictive approach for the design of improved HDT catalysts: γ-Alumina supported (Ni, Co) promoted Mo1−xWxS2 active phases. Applied Catalysis A, General, 2007, 322: 92–97
9 Pérez-Martínez  D J, Gaigneaux  E M, Giraldo  S A. Improving the selectivity to HDS in the HDT of synthetic FCC naphtha using sodium doped amorphous aluminosilicates as support of CoMo catalysts. Applied Catalysis A, General, 2012, 421−422: 48–57
10 Alvarez  A, Escobar  J, Toledo  J A, Pérez  V, Cortés  M A, Pérez  M, Rivera  E. HDS of straight-run gas oil at various nitrogen contents: Comparison between different reaction systems. Fuel, 2007, 86: 1240–1246
11 Wei  Q, Zhou  Y, Wen  S, Xu  C. Preparation and properties of nickel preimpregnated CYCTS supports for hydrotreating coker gas oil. Catalysis Today, 2010, 149: 76–81
12 Wan  G, Duan  A, Zhang  Y, Zhao  Z, Jiang  G, Zhang  D, Gao  Z. Zeolite beta synthesized with acid-treated metakaolin and its application in diesel hydrodesulphurization. Catalysis Today, 2010, 149: 69–75
13 Kallinikos  L E, Jess  A, Papayannakos  N G. Kinetic study and H2S effect on refractory DBTs desulphurization in a heavy gasoil. Journal of Catalysis, 2010, 269: 169–178
14 Torres-Mancera  P, Ramírez  J, Cuevas  R, Gutiérrez-Alejandre  A, Murrieta  F, Luna  R. Hydrodesulphurization of 4,6-DMDBT on NiMo and CoMo catalysts supported on B2O3-Al2O3. Catalysis Today, 2005, 107-108: 551–558
15 Oyama  S, Lee  Y. The active site of nickel phosphide catalysts for the hydrodesulphurization of 4,6-DMDBT. Journal of Catalysis, 2008, 258: 393–400
16 Sánchez-Minero  F, Ramírez  J, Gutiérrez-Alejandre  A, Fernández-Vargas  C, Torres-Mancera  P, Cuevas-Garcia  R. Analysis of the HDS of 4,6-DMDBT in the presence of naphthalene and carbazole over NiMo/Al2O3-SiO2(x) catalysts. Catalysis Today, 2008, 133−135: 267–276
17 Soni  K K, Boahene  P E, Rambabu  N, Dalai  A K, Adjaye  J. Hydrotreating of coker light gas oil on SBA-15 supported nickel phosphide catalysts. Catalysis Today, 2013, 207: 119–126
18 Bai  J, Li  X, Wang  A, Prins  R, Wang  Y. Hydrodesulphurization of dibenzothiophene and its hydrogenated intermediates over bulk MoP. Journal of Catalysis, 2012, 287: 161–169
19 Sigurdson  S, Dalai  A K, Adjaye  J. Hydrotreating of light gas oil using carbon nanotube supported NiMoS catalysts: kinetic modelling. Canadian Journal of Chemical Engineering, 2011, 89: 562–575
20 Valencia  D, Peña  L, García-Cruz  I. Reaction mechanism of hydrogenation and direct desulphurization routes of dibenzothiophene-like compounds: A density functional theory study. International Journal of Quantum Chemistry, 2012, 112: 3599–3605
21 Prins  R, Egorova  M, Röthlisberger  A, Zhao  Y, Sivasankar  N, Kukula  P. Mechanisms of hydrodesulphurization and hydrodenitrogenation. Catalysis Today, 2006, 111: 84–93
22 Macías  G, Ramírez  J, Gutiérrez-Alejandre  A, Cuevas  R. Preparation of highly active NiMo/Al-SBA15 (x) HDS catalysts: Preservation of the support hexagonal porous arrangement. Catalysis Today, 2008, 133−135: 261–266
23 Kostova  N G, Spojakina  A A, Dutková  E, Baláž  P. Mechanochemical approach for preparation of Mo-containing-zeolite. Journal of Physics and Chemistry of Solids, 2007, 68: 1169–1172
24 Yang  G, Pidko  E A, Hensen  E J M. Mechanism of Brønsted acid-catalyzed conversion of carbohydrates. Journal of Catalysis, 2012, 295: 122–132
25 Marques  J, Guillaume  D, Merdrignac  I, Espinat  D, Brunet  S. Effect of catalysts acidity on residues hydrotreatment. Applied Catalysis B: Environmental, 2011, 101: 727–737
26 Leyva  C, Rana  M S, Trejo  F, Ancheyta  J. NiMo supported acidic catalysts for heavy oil hydroprocessing. Catalysis Today, 2009, 141: 168–175
27 Ding  L, Zheng  Y, Zhang  Z, Ring  Z, Chen  J. HDS, HDN, HDA, and hydrocracking of model compounds over Mo-Ni catalysts with various acidities. Applied Catalysis A, General, 2007, 319: 25–37
28 Ramírez  J, Sánchez-Minero  F. Support effects in the hydrotreatment of model molecules. Catalysis Today, 2008, 130: 267–271
29 Infantes-Molina  A, Moreno-León  C, Pawelec  B, Fierro  J L G, Rodríguez-Castellón  E, Jimenez-López  A. Simultaneous hydrodesulphurization and hydrodenitrogenation on MoP/SiO2 catalysts: Effect of catalyst preparation method. Applied Catalysis B: Environmental, 2012, 113−114: 87–99
30 Wu  Z, Sun  F, Wu  W, Feng  Z, Liang  C, Wei  Z, Li  C. On the surface sites of MoP/SiO2 catalyst under sulphiding conditions: IR spectroscopy and catalytic reactivity studies. Journal of Catalysis, 2004, 222: 41–52
31 Phillips  D C, Sawhill  S J, Self  R, Bussell  M E. Synthesis, characterization, and hydrodesulphurization properties of silica-supported molybdenum phosphide catalysts. Journal of Catalysis, 2002, 207: 266–273
32 Clark  P, Wang  X, Oyama  S T. Characterization of silica-supported molybdenum and tungsten phosphide hydroprocessing catalysts by 31P nuclear magnetic resonance spectroscopy. Journal of Catalysis, 2002, 207: 256–265
33 Yao  S, Song  C, Nan  F, Botton  G A, Chen  J, Fairbridge  C, Hui  R, Zhang  J. Synthesis of hierarchical structured porous MoS2/SiO2 microspheres by ultrasonic spray pyrolysis. Canadian Journal of Chemical Engineering, 2012, 90: 330–335
34 Nan  F, Song  C, Zhang  J, Hui  R, Chen  J, Fairbridge  C, Botton  G A. STEM HAADF tomography of molybdenum disulfide with mesoporous structure. ChemCatChem, 2011, 3: 999–1003
35 Liu  H, Meng  X, Zhao  D, Li  Y. The effect of sulphur compound on the hydrogenation of tetralin over a Pd-Pt/HDAY catalyst. Chemical Engineering Journal, 2008, 140: 424–431
36 Lamure-Meille  V, Schulz  E, Lemaire  M, Vrinat  M. Effect of experimental parameters on the relative reactivity of dibenzothiophene and 4-methyldibenzothiophene. Applied Catalysis A, General, 1995, 131: 143–157
37 Qian  W, Ishihara  A, Wang  G, Tsuzuki  T, Godo  M, Kabe  T. Elucidation of behavior of sulphur on sulfided Co-Mo/Al2O3 catalyst using a 35S radioisotope pulse tracer method. Journal of Catalysis, 1997, 170: 286–294
38 Bataille  F. Alkyldibenzothiophenes hydrodesulphurization-promoter effect, reactivity, and reaction mechanism. Journal of Catalysis, 2000, 191: 409–422
39 Lee  R Z, Ng  F T T. Effect of water on HDS of DBT over a dispersed Mo catalyst using in situ generated hydrogen. Catalysis Today, 2006, 116: 505–511
40 Hrabar  A, Hein  J, Gutiérrez  O Y, Lercher  J A. Selective poisoning of the direct denitrogenation route in o-propylaniline HDN by DBT on Mo and NiMo/γ-Al2O3 sulfide catalysts. Journal of Catalysis, 2011, 281: 325–338
41 Cristol  S, Paul  J F, Payen  E, Bougeard  D, Hutschka  F, Clémendot  S. DBT derivatives adsorption over molybdenum sulfide catalysts: A theoretical study. Journal of Catalysis, 2004, 224: 138–147
42 Todorova  T, Prins  R, Weber  T. A density functional theory study of the hydrogenolysis reaction of CH3SH to CH4 on the catalytically active (100) edge of 2H-MoS2. Journal of Catalysis, 2005, 236: 190–204
43 Wang  H, Prins  R. Hydrodesulphurization of dibenzothiophene and its hydrogenated intermediates over sulfided Mo/γ-Al2O3. Journal of Catalysis, 2008, 258: 153–164
44 Santillán-Vallejo  L A, Melo-Banda  J A, Reyes de la Torre  A I, Sandoval-Robles  G, Domínguez  J M, Montesinos-Castellanos  A, de los Reyes-Heredia  J A. Supported (NiMo,CoMo)-carbide, -nitride phases: Effect of atomic ratios and phosphorus concentration on the HDS of thiophene and dibenzothiophene. Catalysis Today, 2005, 109: 33–41
45 Da Costa  P, Manoli  J M, Potvin  C, Djéga-Mariadassou  G. Deep HDS on doped molybdenum carbides: From probe molecules to real feedstocks. Catalysis Today, 2005, 107-108: 520–530
46 Castillo-Villalón  P, Ramirez  J, Castañeda  R. Relationship between the hydrodesulphurization of thiophene, dibenzothiophene, and 4,6-dimethyl dibenzothiophene and the local structure of Co in Co−Mo−S sites: Infrared study of adsorbed CO. Journal of Catalysis, 2012, 294: 54–62
47 Kwak  C, Lee  J J, Bae  J S, Choi  K, Moon  S H. Hydrodesulphurization of DBT, 4-MDBT, and 4, 6-DMDBT on fluorinated CoMoS/Al2O3 catalysts. Applied Catalysis A, General, 2000, 200: 233–242
48 Altamirano  E, de los Reyes  J A, Murrieta  F, Vrinat  M. Hydrodesulphurization of 4,6-dimethyldibenzothiophene over Co(Ni)MoS2 catalysts supported on alumina: Effect of gallium as an additive. Catalysis Today, 2008, 133−135: 292–298
49 Kabe  T, Ishihara  A, Zhang  Q. Deep desulphurization of light oil. Part 2: Hydrodesulphurization of dibenzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene. Applied Catalysis A, General, 1993, 97: L1–L9
50 Arribas  M A, Corma  A, Díaz-Cabañas  M J, Martínez  A. Hydrogenation and ring opening of tetralin over bifunctional catalysts based on the new ITQ-21 zeolite. Applied Catalysis A, General, 2004, 273: 277–286
51 Corma  A. Decalin and tetralin as probe molecules for cracking and hydrotreating the light cycle oil. Journal of Catalysis, 2001, 200: 34–44
52 Gutiérrez  O Y, Klimova  T. Effect of the support on the high activity of the (Ni)Mo/ZrO2-SBA-15 catalyst in the simultaneous hydrodesulphurization of DBT and 4,6-DMDBT. Journal of Catalysis, 2011, 281: 50–62
53 Santikunaporn  M, Herrera  J, Jongpatiwut  S, Resasco  D, Alvarez  W, Sughrue  E. Ring opening of decalin and tetralin on HY and Pt/HY zeolite catalysts. Journal of Catalysis, 2004, 228: 100–113
54 Ma  Y, Zeng  M, He  J, Duan  L, Wang  J, Li  J, Wang  J. Syntheses and characterizations of cobalt doped mesoporous alumina prepared using natural rubber latex as template and its catalytic oxidation of tetralin to tetralone. Applied Catalysis A, General, 2011, 396: 123–128
[1] Supplementary Material Download
[1] Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang. Selective hydrogenation of acetylene over Pd/CeO2[J]. Front. Chem. Sci. Eng., 2020, 14(6): 929-936.
[2] Xinxiang Cao, Tengteng Lyu, Wentao Xie, Arash Mirjalili, Adelaide Bradicich, Ricky Huitema, Ben W.-L. Jang, Jong K. Keum, Karren More, Changjun Liu, Xiaoliang Yan. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2020, 14(4): 522-533.
[3] Yuxia Jiang, Donge Wang, Zhendong Pan, Huaijun Ma, Min Li, Jiahe Li, Anda Zheng, Guang Lv, Zhijian Tian. Microemulsion-mediated hydrothermal synthesis of flower-like MoS2 nanomaterials with enhanced catalytic activities for anthracene hydrogenation[J]. Front. Chem. Sci. Eng., 2018, 12(1): 32-42.
[4] Enxian Yuan, Xiangwei Ren, Li Wang, Wentao Zhao. A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd/Al 2O3 catalyst[J]. Front. Chem. Sci. Eng., 2017, 11(2): 177-184.
[5] Guozhen Xu, Jian Zhang, Shengping Wang, Yujun Zhao, Xinbin Ma. Effect of thermal pretreatment on the surface structure of PtSn/SiO2 catalyst and its performance in acetic acid hydrogenation[J]. Front. Chem. Sci. Eng., 2016, 10(3): 417-424.
[6] Zhiqiang Song,Hua Wang,Yufei Niu,Xiao Liu,Jinyu Han. Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts[J]. Front. Chem. Sci. Eng., 2015, 9(4): 461-466.
[7] Xinxiang Cao,Arash Mirjalili,James Wheeler,Wentao Xie,Ben W.-L. Jang. Investigation of the preparation methodologies of Pd-Cu single atom alloy catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2015, 9(4): 442-449.
[8] Alan J. McCue, James A. Anderson. Recent advances in selective acetylene hydrogenation using palladium containing catalysts[J]. Front. Chem. Sci. Eng., 2015, 9(2): 142-153.
[9] Wei WANG, Jinlong GONG. Methanation of carbon dioxide: an overview[J]. Front Chem Sci Eng, 2011, 5(1): 2-10.
[10] ZHOU Jun, CHU Wei, ZHANG Hui, XU Huiyuan, ZHANG Tao. Effect of Fe content on FeMn catalysts for light alkenes synthesis[J]. Front. Chem. Sci. Eng., 2008, 2(3): 315-318.
[11] FAN Qingming, LIU Yingxin, ZHENG Yifan, YAN Wei. Preparation of Ni/SiO catalyst in ionic liquids for hydrogenation[J]. Front. Chem. Sci. Eng., 2008, 2(1): 63-68.
[12] XUE Ping, WU Tao. Asymmetric transfer hydrogenation of prochiral ketone catalyzed over Fe-CS/SBA-15 catalyst[J]. Front. Chem. Sci. Eng., 2007, 1(3): 251-255.
[13] LIU Yingxin, WEI Zuojun, CHEN Jixiang, ZHANG Jiyan. Effects of preparation methods of support on the properties of nickel catalyst for hydrogenation of m-dinitrobenzene[J]. Front. Chem. Sci. Eng., 2007, 1(3): 287-291.
[14] SONG Yun, LI Wei, ZHANG Minghui, TAO Keyi. Hydrogenation of furfuryl alcohol to tetrahydrofurfuryl alcohol on NiB/SiO2 amorphous alloy catalyst[J]. Front. Chem. Sci. Eng., 2007, 1(2): 151-154.
[15] WU Zhijie, LI Wei, ZHANG Minghui, TAO Keyi. Advances in chemical synthesis and application of metal-metalloid amorphous alloy nanoparticulate catalysts[J]. Front. Chem. Sci. Eng., 2007, 1(1): 87-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed