Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (4) : 407-427    https://doi.org/10.1007/s11705-015-1538-y
REVIEW ARTICLE
Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery
Jennica L. Zaro,Wei-Chiang Shen()
Department of Pharmacology and Pharmaceutical Science, University of Southern California, Los Angeles, CA 90033, USA
 Download: PDF(845 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Over the past few decades, cell penetrating peptides (CPPs) have become an important class of drug carriers for small molecules, proteins, genes and nanoparticle systems. CPPs represent a very diverse set of short peptide sequences (10?30 amino acids), generally classified as cationic or amphipathic, with various mechanisms in cellular internalization. In this review, a more comprehensive assessment of the chemical structural characteristics, including net cationic charge, hydrophobicity and helicity was assembled for a large set of commonly used CPPs, and compared to results from numerous in vivo drug delivery studies. This detailed information can aid in the design and selection of effective CPPs for use as transport carriers in the delivery of different types of drug for therapeutic applications.

Keywords cell penetrating peptides      amphipathic peptides      drug delivery     
Corresponding Author(s): Wei-Chiang Shen   
Online First Date: 04 November 2015    Issue Date: 26 November 2015
 Cite this article:   
Jennica L. Zaro,Wei-Chiang Shen. Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery[J]. Front. Chem. Sci. Eng., 2015, 9(4): 407-427.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1538-y
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I4/407
Sequence Peptide name Origin %a) NCb) Helicalc) Ref.
Protein derived CPPs
GRKRKKRT 6-Oct Transcription factor Oct-6 0% +6 No [11,12]
RRIRPRPPRLPRPRP Bac-1-15 Bactenecin 7 13% +7 No [13]
KMDCRWRWKCCKK Crot (27?39) Rattlesnake venom (Crotamine) 46% +5 No [14]
RKKRRRESRKKRRRES DPV3 Human superoxide dismutase 0% +12 No [15]
RRRRNRTRRNRRRVRGC FHV coat (35?49) RNA binding peptides 11% +11 No [1618]
ASMWERVKSIIKSSLAAASNI FHV γ peptide Flock house virus 52% +2 Yes (8 THR) [19,20]
LGTYTQDFNKFHTFPQTAIGVGAP hCT (9?32) Human calcitonin (hCT) 33% 0 No [21]
GGVCPKILKKCRRDSDCPGACICRGNGYCGSGSD MCoTI-II(MCo) Momordica cochinchinensis trypsin inhibitor II 32% +3 No [22]
VQRKRQKLMP NF-kB Transcription factor NF-kB 30% +4 No [12]
NAKTRRHERRRKLAIERGC P22 N RNA binding peptides 26% +6 No [16]
RQIKIWFQNRRMKWKK Penetratin (Antp) Antennapedia homeodomain of drosophila 37% +7 Yes (3 THR) [14,20,21,2333]
LLIILRRRIRKQAHAHSK pVEC Murine vascular endothelial-cadherin protein 44% +6 Yes (4 THR) [34]
PKKKRKV SV40 Transcription factor SV40 14% +5 No [12]
RRLSYSRRRF SynB3 Protegrin 30% +5 No [31]
GRKKRRQRRRPPQC HIV-1 Tat (47?57) HIV-1 7% +8 No [1315,17,21,29,33,3543]
VSRRRRRRGGRRRR LMWP Protamine 7% +10 No [44]
KAAPAKKAAAKKAPAKKAAAKK HBHAc Mycobacteriumtuberculosis 44% +10 No [45]
Chimeric CPPs
CHHHHHRKKRRQRRRHHHHHC mTat Tat+ histidine 5% +6 No [46]
KETWWETWWTEWSQPKKKRKV Pep-1 Trp rich cluster+ SV40 NLS 28% +3 Yes (5 THR) [47]
KETWFETWFTEWSQPKKKRKV Pep-2 Trp rich cluster+ SV40 NLS 28% +3 Yes (5 THR) [48]
KWFETWFTEWPKKRK Pep-3 Trp rich cluster+ SV40 NLS 33% +3 Yes (3 THR) [48]
PKKKRKVALWKTLLKKVLKA PV-S4(13) SV40 NLS+ dermaseptin S4 peptide 45% +9 Yes (7 THR) [40]
AAVALLPAVLLALLAPVQRKRQKLMP SN50 Signal sequence of K-FGF+ NLS of NF-kB p50 subunit 65% +4 Yes (6 THR) [49]
AGYLLGKINLKALAALAKKIL Transportan; TP10 Fusion of neuropeptide galanin and wasp venom peptide 61% +4 Yes (9 THR) [26,29,50]
Synthetic CPPs
WEAALAEALAEALAEHLAEALAEALEALAA GALA n/a 73% ?7 Yes(17 THR) [51]
IRQRRRR IRQ n/a 29% +5 No [52]
WEAKLAKALAKALAKHLAKALAKALKACEA KALA n/a 66% +5 Yes(16 THR) [53]
KLALKLALKALKAALKLA MAP n/a 72% +5 Yes(12 THR) [28,54,55]
l-Rn, d-Rn (n = 5?16) Oligoarginine n/a 0% +n No [14,16,23,29,30,35,41,42,5558]
RALARALARALRALAR RALA n/a 69% +5 No [59]
WRWRWRWRWRWRWR RW n/a 50% +7 No [18]
CVQWSLLRGYQPC S41 n/a 46% +1 No [60]
Tab.1  Examples of CPPs
Fig.1  Guanidine structure in CPPs. (A) Structural comparison of arginine and lysine side chains, along with guanidinated (Gnd)-lysine and methylated arginine; (B) Proposed hydrogen bonding of the guanidine group of arginine with phosphate groups present at the cell surface
CPP Direct translocation Vesicular Ref.
Antp 15% 85% [74]b)
(RW)9 30% 70% [74]b)
Tat 75% 25% [74]b)
Tat 92% 8% [42]c)
(R)9 50% 50% [42]c)
(R)9 82% 18% [42]c)
(K)9 21% 79% [42]c)
Gnd-(K)9a) 53% 48% [42]c)
(Methylated-R)9 n.d.d) >100% (unpublished findings)
MAP n.d.d) >100% [55]c)
Tab.2  Comparison of CPPs for cytosolic versus vesicular accumulation
Fig.2  Proposed mechanisms of internalization. Endocytic internalization mechanisms including (1) macropinocytosis, (2) micropinocytosis, (3) clathrin-mediated endocytosis, and (4) caveolar-mediated endocytosis have been shown to be involved in CPP uptake into cells. Several endocytosis-independent mechanisms have also been proposed, including membrane destabilization through (5) inverted micelle formation, or the (6) “carpet” model describing perturbation of the phospholipids to increase membrane fluidity; or pore formation through (7) membrane insertion following interaction with the anionic groups of the phospholipid membrane to form toroidal pores, or (8) formation of an α-helical structure within the membrane where hydrophilic side chains form the inner face of the port to form a barrel stave pore.
CPP % Φ NC Helicalb) Drug /cargo Studies Animal model Ref.
SynB3 30% +5 No Endomorphin-1 Brain delivery; analgesic effect Mouse [130]
R9-linker-E9 (linker: cleavable by MMP2/9) 0% +9 No Cy5/Cy7 Tumor targeting Mouse (HT-1080 xenograft) [125]
R9-linker-E9 (linker: cleavable by MMP2/9) 0% +9 No Cy5/Cy7 Tumor targeting Mouse (orthotopic HNSCC xenograft, tongue) [131]
R11 0% +11 No FITC Brain delivery Mouse [132]
R8-linker-E8 (linker: cleavable by MMP2) 0% +9 No 125I/177Lu-DOTA Infarcted myocardium uptake Mouse model of myocardial infarction [133]
hCT(9-32) 68Ga-DOTA Biodistribution; metabolism Mouse [134]
14C-R8 0% +8 No n/a Biodistribution; metabolism Rat [135]
Tat 7% +8 No Porphyrin Tumor accumulation Mouse (PC-3M xenograft) [136]
R8-linker-E8 (linker: cleavable by MMP2) 0% +8 No Cy5 Detection protease activity Mouse (asthma model) [137]
R9-linker-E9 (linker: H2O2-cleavable small molecule) 0% +9 No Fluorescein/Cy5 Imagining of inflammation LPS mouse model of lung inflammation [126]
TAT, R11 7%, 0% +8, +11 No Sodium undecahydro-mercaptocloso-dodecaborate Tumor reduction via BNCT Glioma-bearing mouse [138]
Tab.3  CPP-small molecule conjugates for in vivo deliverya)
Fig.3  Examples of linkers in small molecule-CPP conjugates. Stable linkers for small-molecule CPPs include the thioether linkage, which is achieved utilizing a maleimido-reactive group, the triazole linker by use of copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) click chemistry, and the amide linkage using carbodiimides and/or N-hydroxysuccinimide esters. Cleavable linkers include those cleaved in acidic pH such as the hydrazone linker, obtained by reaction of an aldehyde with a hydrazide, and the cis-aconityl linker, obtained by reaction of citraconic anhydride with an amine. Disulfide linkers formed between two thiols, which are cleaved under reducing conditions are also used.
Fig.4  Examples of masking strategies to target CPP-drug delivery systems. Due to their high cationic charge, CPPs are non-specifically internalized in many types of cells and tissues. This non-specific distribution can overpower the targeting recognition when combined with other active targeting approaches. One approach in overcoming this issue is by shielding the charge of the CPP until the complex reaches the target site. (A) In this example, the cationic charge of oligoarginine was masked by linkage to oligoglutamic acid through a protease-sensitive peptide sequence [124,125,131,137,154,155], or a hydrogen peroxide sensitive group [126]. Upon cleavage, the oligoarginine and oligoglutamic acid dissociate, revealing the cationic charge of oligoarginine. (B) Alternatively, the cationic charge of the CPP was masked by linkage to a histidine-glutamic acid copolymer sequence [122,123,157]. At physiological pH 7.4, the histidine is neutral while the glutamic acid is negative; therefore the net anionic copolymer masks the cationic charge of the CPP. With cationic histidine and anionic glutamic acid at mildly acidic pH 6.5?7, the copolymer net charge is neutral, unmasking cationic charge of the CPP. (C) In this example, the small chain PEG-CPPs are linked to lipids in a liposome via a stable linkage, and also targeted by conjugation with a long chain PEG-antibody via a cleavable linker (e.g., protease sensitive [158] or acidic pH-labile [159]). In this design, the CPP conjugated to a small PEG chain is masked by the longer PEG chain linked to a targeting agent. Once the liposomes accumulate near the surface of the target site, the targeting agent-long PEG chain conjugate is cleaved, revealing the CPP to drive the internalization
CPP % Φ NC Helicalb) Drug /cargo Delivery system Studies Animal model Ref.
Tat 7% +8 No Gelonin Tat-gelonin+ CEA-heparin complex Tumor targeting & reduction Mouse (LS174T xenograft) [167]
Tat 7% +8 No HaFGF Fusion protein Intranasal delivery Rat [168]
R8-linker-E8 (linker: cleavable by MMP2) 0% +8 No MMAE Fusion protein with integrin targeting cyclic peptide Tumor regression Mouse (mDA-MB-231 xenograft) [154]
Tat 7% +8 No β-galactosidase Fusion protein PK; tissue distribution Mouse [169]
Tat 7% +8 No BCL6 peptide inhibitor Fusion protein Tissue penetration; tumor regression Mouse (DLBCL xenograft) [170]
Penetratin 37% +7 Yes p53(17?26) Fusion protein Tumor regression Mouse (TUC-3 xenograft) [171]
Tat 7% +8 No [(KLAKLAK)2-DEVD]3 Fusion protein Apoptosis at tumor site Mouse (B16-F10 xenograft) [172]
Tat 7% +8 No AHPN Fusion protein Tumor growth inhibition Mouse (435.eB xenografts) [173]
Penetratin 37% +7 Yes NBD peptide Fusion protein Anti-inflammatory effect Colitis-induced mouse model [174]
Penetratin 37% +7 Yes NBD peptide Fusion protein Prevention of nigrostriatal degeneration Parkinson’s disease mouse model [175]
Tat 7% +8 No BH4 peptide Fusion protein Immunosupression Mouse sepsis model [176]
Tat 7% +8 No STAT-6-IP Fusion protein Inhibition of lung inflammation Allergic rhinitis and asthma mouse model [177]
d-R9 0% +9 No Insulin Fusion protein Decreased blood glucose levels Diabetic rat model [41]
(HE)10-MAP-GST 72% +5 Yes GST Fusion protein Tumor targeting Mouse (MDA-MB-231 xenograft) [122]
Bac 13% +7 No p21 peptide ELP-fusion protein Tumor targeting; survival time Mouse (S2013 xenograft) [178]
d-Tat 7% +8 No AlexaFluor-488 (fluorophore), QSY7 (quencher) Fusion peptide with activatable probe containing DEVD sequence Imaging of caspase activity Rat [179]
Pep-1 28% +3 Yes HO-1 Fusion protein Prevention of intestinal ischemia Rat [180]
Pep-1 28% +3 Yes HO-1 Fusion protein Reduced myocardial infarct size Ischemic rats [181]
Tab.4  CPP-fusion proteins for in vivo deliverya)
CPP % Φ NC Helicalb) Drug /cargo Other components Studies Animal model Ref.
RALA 66% +5 Yes pDNA n/a Gene expression Mouse [182]
R8 0% +8 No P53 pDNA, AVPI, and Dox n/a Gene expression; tumor regression Mouse (MCF7 xenograft) [183]
Mannose-Tat-PEI1800+ DNA 7% +8 No DNA Mannose-CPP-PEI conjugate complexed with DNA Dendritic cell targeting following transdermal microneedle delivery Mice [184]
mTat, Importin NLS DNA DNA complex with PPMS, PEG, PGA Gene transfection efficiency Mouse [46]
R9-linker-PEG (linker: cleavable by MMP2) 0% +9 No siRNA n/a Tumor targeting & regression Mouse (orthotopic MDA-MB-231 xenograft) [185]
Penetratin 37% +7 Yes Insulin n/a Oral delivery Mouse [186]
Tat 7% +8 No sCT Mixture with poliovirus coat protein peptide Oral delivery Rat [187]
Tab.5  Non-covalent CPP-complexes for in vivo deliverya)
Fig.5  Poly-L-lysine (PLL)-CPP siRNA Polyplexes. In order to overcome the issue of charge neutralization of the CPP upon complexation with siRNA, a multi-component polyplex consisting of siRNA, 21mer PLL modified to incorporate CPP conjugation sites, and a CPP was designed. PLL was first reacted with the amine-to-thiol crosslinker, N-succinimidyl 3-(2-pyridyldithio) propionate to form pyridyldithiol (PDP)-activated PLL, and then complexed with siRNA to form a neutral polyplex. Cysteine-terminal CPPs were then conjugated to the siRNA-polyplex via a reducible disulfide bond in order to allow for separation of the carrier CPPs from the PLL-siRNA polyplex following access to the reductive cytosolic compartment [190]
CPP % Φ NCb) Helical Drug/cargo Nanoparticle Studies Animal model Ref.
R9-linker-E8 (linker: cleavable by uPA) 0% +9 No PTX PLA-PEG Tumor targeting & reduction Glioma-bearing mouse [195]
R8-linker-E8 (linker: cleavable by MMP2) 0% +8 No Coumarin-6 LRP1 coated PEG-PCL Tumor targeting Mouse (U87 xenograft) [196]
IRQ sCT SLN, CSK-targeted Oral delivery Rat [197]
R8 0% +8 No sCT Chitosan-modified liposome Oral delivery Rat [198]
R8-linker-E8 (linker: cleavable by MMP2) 0% +8 No Dox Angiopep-2 targeted PEG-PCL Tumor targeting & regression Glioma-bearing mouse [199]
Tat 7% +8 No Dox Disulfide-linked PEG-liposome Tumor targeting & regression Mouse xenograft [200]
Tat 7% +8 No Dox Transferrin-liposome Tumor targeting & regression Glioma-bearing mice [201]
R8 0% +8 No PTX Integrin-targeted liposome Tumor targeting; survival time Glioma-bearing mice [202]
Tat 7% +8 No DiD dye Transferrin and cholesterol-PEG modified liposome Tumor targeting Mouse (HepG2 xenograft) [203]
R11 0% +11 No p53 gene Ad5 Tumor regression Mouse (EH-GB2 xenograft) [204]
R8 0% +8 No Dox PEG-modified liposome Tumor regression Mouse (C26 xenograft) [205]
Penetratin 37% +7 Yes Dox NGR-targeted thermosensitive Liposome In vivo tumor regression Mouse (HT-1080 xenograft) [200]
R8 0% +8 No Dox HPMA copolymer with CPP-polyanion (heparin sulfate, hyaluronic acid, fucoidan, polyglutamic acid) Survival time Mouse (B16-F10 xenograft) [206]
R7 0% +7 No Vincristine sulfate PLGA-PEG folate conjugate Tumor regression Mouse (MCF7 xenograft) [207]
Tat 7% +8 No Dox PEG-PE-linked to liposome via Hz-linker Tumor regression Mouse (SKOV-3 xenograft) [159]
R8 0% +8 No α-galactosyl-ceramide Liposomes Improved immune response Mouse [208]
Tab.6  CPP-modified Nanoparticles for in vivo deliverya)
1 Green  M, Loewenstein  P M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 1988, 55(6): 1179–1188
https://doi.org/10.1016/0092-8674(88)90262-0
2 Frankel  A D, Pabo  C O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988, 55(6): 1189–1193
https://doi.org/10.1016/0092-8674(88)90263-2
3 Patel  L N, Zaro  J L, Shen  W C. Cell penetrating peptides: Intracellular pathways and pharmaceutical perspectives. Pharmaceutical Research, 2007, 24(11): 1977–1992
https://doi.org/10.1007/s11095-007-9303-7
4 Vasconcelos  L, Madani  F, Arukuusk  P, Parnaste  L, Graslund  A, Langel  U. Effects of cargo molecules on membrane perturbation caused by transportan10 based cell-penetrating peptides. Biochimica et Biophysica Acta, 2014, 1838(12): 3118–3129
https://doi.org/10.1016/j.bbamem.2014.08.011
5 Grdisa  M. The delivery of biologically active (therapeutic) peptides and proteins into cells. Current Medicinal Chemistry, 2011, 18(9): 1373–1379
https://doi.org/10.2174/092986711795029591
6 Dietz  G P, Bahr  M. Delivery of bioactive molecules into the cell: The Trojan horse approach. Molecular and Cellular Neurosciences, 2004, 27(2): 85–131
https://doi.org/10.1016/j.mcn.2004.03.005
7 Copolovici  D M, Langel  K, Eriste  E, Langel  U. Cell-penetrating peptides: Design, synthesis, and applications. ACS Nano, 2014, 8(3): 1972–1994
https://doi.org/10.1021/nn4057269
8 Bechinger  B, Aisenbrey  C. The polymorphic nature of membrane-active peptides from biophysical and structural investigations. Current Protein & Peptide Science, 2012, 13(7): 602–610
https://doi.org/10.2174/138920312804142093
9 El-Andaloussi  S, Holm  T, Langel  U. Cell-penetrating peptides: Mechanisms and applications. Current Pharmaceutical Design, 2005, 11(28): 3597–3611
https://doi.org/10.2174/138161205774580796
10 Walrant  A, Bechara  C, Alves  I D, Sagan  S. Molecular partners for interaction and cell internalization of cell-penetrating peptides: How identical are they? Nanomedicine (London), 2012, 7(1): 133–143
https://doi.org/10.2217/nnm.11.165
11 Lewis  H D, Husain  A, Donnelly  R J, Barlos  D, Riaz  S, Ginjupalli  K, Shodeinde  A, Barton  B E. Creation of a novel peptide with enhanced nuclear localization in prostate and pancreatic cancer cell lines. BMC Biotechnology, 2010, 10(1): 79
https://doi.org/10.1186/1472-6750-10-79
12 Ragin  A D, Morgan  R A, Chmielewski  J. Cellular import mediated by nuclear localization signal peptide sequences. Chemistry & Biology, 2002, 9(8): 943–948
https://doi.org/10.1016/S1074-5521(02)00189-8
13 Sadler  K, Eom  K D, Yang  J L, Dimitrova  Y, Tam  J P. Translocating proline-rich peptides from the antimicrobial peptide bactenecin 7. Biochemistry, 2002, 41(48): 14150–14157
https://doi.org/10.1021/bi026661l
14 Jha  D, Mishra  R, Gottschalk  S, Wiesmuller  K H, Ugurbil  K, Maier  M E, Engelmann  J. CyLoP-1: A novel cysteine-rich cell-penetrating peptide for cytosolic delivery of cargoes. Bioconjugate Chemistry, 2011, 22(3): 319–328
https://doi.org/10.1021/bc100045s
15 De Coupade  C, Fittipaldi  A, Chagnas  V, Michel  M, Carlier  S, Tasciotti  E, Darmon  A, Ravel  D, Kearsey  J, Giacca  M, Cailler  F. Novel human-derived cell-penetrating peptides for specific subcellular delivery of therapeutic biomolecules. Biochemical Journal, 2005, 390(2): 407–418
https://doi.org/10.1042/BJ20050401
16 Futaki  S, Suzuki  T, Ohashi  W, Yagami  T, Tanaka  S, Ueda  K, Sugiura  Y. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. Journal of Biological Chemistry, 2001, 276(8): 5836–5858
https://doi.org/10.1074/jbc.M007540200
17 Nakase  I, Hirose  H, Tanaka  G, Tadokoro  A, Kobayashi  S, Takeuchi  T, Futaki  S. Cell-surface accumulation of flock house virus-derived peptide leads to efficient internalization via macropinocytosis. Molecular Therapy, 2009, 17(11): 1868–1876
https://doi.org/10.1038/mt.2009.192
18 Langedijk  J P, Olijhoek  T, Schut  D, Autar  R, Meloen  R H. New transport peptides broaden the horizon of applications for peptidic pharmaceuticals. Molecular Diversity, 2004, 8(2): 101–111
https://doi.org/10.1023/B:MODI.0000025653.26130.ce
19 Bong  D T, Steinem  C, Janshoff  A, Johnson  J E, Reza Ghadiri  M. A highly membrane-active peptide in Flock House virus: Implications for the mechanism of nodavirus infection. Chemistry & Biology, 1999, 6(7): 473–481
https://doi.org/10.1016/S1074-5521(99)80065-9
20 Bertrand  J R, Malvy  C, Auguste  T, Toth  G K, Kiss-Ivankovits  O, Illyes  E, Hollosi  M, Bottka  S, Laczko  I. Synthesis and studies on cell-penetrating peptides. Bioconjugate Chemistry, 2009, 20(7): 1307–1314
https://doi.org/10.1021/bc900005j
21 Trehin  R, Krauss  U, Beck-Sickinger  A G, Merkle  H P, Nielsen  H M. Cellular uptake but low permeation of human calcitonin-derived cell penetrating peptides and Tat(47-57) through well-differentiated epithelial models. Pharmaceutical Research, 2004, 21(7): 1248–1256
https://doi.org/10.1023/B:PHAM.0000033013.45204.c3
22 Cascales  L, Henriques  S T, Kerr  M C, Huang  Y H, Sweet  M J, Daly  N L, Craik  D J. Identification and characterization of a new family of cell-penetrating peptides: Cyclic cell-penetrating peptides. Journal of Biological Chemistry, 2011, 286(42): 36932–36943
https://doi.org/10.1074/jbc.M111.264424
23 Thoren  P E, Persson  D, Isakson  P, Goksor  M, Onfelt  A, Norden  B. Uptake of analogs of penetratin, Tat(48-60) and oligoarginine in live cells. Biochemical and Biophysical Research Communications, 2003, 307(1): 100–107
https://doi.org/10.1016/S0006-291X(03)01135-5
24 Fischer  P M, Zhelev  N Z, Wang  S, Melville  J E, Fahraeus  R, Lane  D P. Structure-activity relationship of truncated and substituted analogues of the intracellular delivery vector Penetratin. Journal of Peptide Research, 2000, 55(2): 163–172
https://doi.org/10.1034/j.1399-3011.2000.00163.x
25 Derossi  D, Calvet  S, Trembleau  A, Brunissen  A, Chassaing  G, Prochiantz  A. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. Journal of Biological Chemistry, 1996, 271(30): 18188–18193
https://doi.org/10.1074/jbc.271.30.18188
26 El-Andaloussi  S, Johansson  H J, Holm  T, Langel  U. A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Molecular Therapy, 2007, 15(10): 1820–1826
https://doi.org/10.1038/sj.mt.6300255
27 Duchardt  F, Ruttekolk  I R, Verdurmen  W P, Lortat-Jacob  H, Burck  J, Hufnagel  H, Fischer  R, van den Heuvel  M, Lowik  D W, Vuister  G W, Ulrich  A, de Waard  M, Brock  R. A cell-penetrating peptide derived from human lactoferrin with conformation-dependent uptake efficiency. Journal of Biological Chemistry, 2009, 284(52): 36099–36108
https://doi.org/10.1074/jbc.M109.036426
28 Scheller  A, Oehlke  J, Wiesner  B, Dathe  M, Krause  E, Beyermann  M, Melzig  M, Bienert  M. Structural requirements for cellular uptake of alpha-helical amphipathic peptides. Journal of Peptide Science, 1999, 5(4): 185–194
https://doi.org/10.1002/(SICI)1099-1387(199904)5:4<185::AID-PSC184>3.0.CO;2-9
29 Jones  S W, Christison  R, Bundell  K, Voyce  C J, Brockbank  S M, Newham  P, Lindsay  M A. Characterisation of cell-penetrating peptide-mediated peptide delivery. British Journal of Pharmacology, 2005, 145(8): 1093–1102
https://doi.org/10.1038/sj.bjp.0706279
30 Verdurmen  W P, Bovee-Geurts  P H, Wadhwani  P, Ulrich  A S, Hallbrink  M, van Kuppevelt  T H, Brock  R. Preferential uptake of L-versus D-amino acid cell-penetrating peptides in a cell type-dependent manner. Chemistry & Biology, 2011, 18(8): 1000–1010
https://doi.org/10.1016/j.chembiol.2011.06.006
31 Drin  G, Cottin  S, Blanc  E, Rees  A R, Temsamani  J. Studies on the internalization mechanism of cationic cell-penetrating peptides. Journal of Biological Chemistry, 2003, 278(33): 31192–31201
https://doi.org/10.1074/jbc.M303938200
32 Kilk  K, Magzoub  M, Pooga  M, Eriksson  L E, Langel  U, Graslund  A. Cellular internalization of a cargo complex with a novel peptide derived from the third helix of the islet-1 homeodomain. Comparison with the penetratin peptide. Bioconjugate Chemistry, 2001, 12(6): 911–916
https://doi.org/10.1021/bc0100298
33 Han  K, Jeon  M J, Kim  K A, Park  J, Choi  S Y. Efficient intracellular delivery of GFP by homeodomains of Drosophila Fushi-tarazu and Engrailed proteins. Molecules and Cells, 2000, 10(6): 728–732
https://doi.org/10.1007/s100590000036
34 Elmquist  A, Hansen  M, Langel  U. Structure-activity relationship study of the cell-penetrating peptide pVEC. Biochimica et Biophysica Acta, 2006, 1758(6): 721–729
https://doi.org/10.1016/j.bbamem.2006.05.013
35 Wender  P A, Mitchell  D J, Pattabiraman  K, Pelkey  E T, Steinman  L, Rothbard  J B. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(24): 13003–13008
https://doi.org/10.1073/pnas.97.24.13003
36 Kamide  K, Nakakubo  H, Uno  S, Fukamizu  A. Isolation of novel cell-penetrating peptides from a random peptide library using in vitro virus and their modifications. International Journal of Molecular Medicine, 2010, 25(1): 41–51
37 Takeshima  K, Chikushi  A, Lee  K K, Yonehara  S, Matsuzaki  K. Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes. Journal of Biological Chemistry, 2003, 278(2): 1310–1315
https://doi.org/10.1074/jbc.M208762200
38 Richard  J P, Melikov  K, Vives  E, Ramos  C, Verbeure  B, Gait  M J, Chernomordik  L V, Lebleu  B. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. Journal of Biological Chemistry, 2003, 278(1): 585–590
https://doi.org/10.1074/jbc.M209548200
39 Vives  E, Brodin  P, Lebleu  B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. Journal of Biological Chemistry, 1997, 272(25): 16010–16017
https://doi.org/10.1074/jbc.272.25.16010
40 Hariton-Gazal  E, Feder  R, Mor  A, Graessmann  A, Brack-Werner  R, Jans  D, Gilon  C, Loyter  A. Targeting of nonkaryophilic cell-permeable peptides into the nuclei of intact cells by covalently attached nuclear localization signals. Biochemistry, 2002, 41(29): 9208–9214
https://doi.org/10.1021/bi0201466
41 Patel  L N, Wang  J, Kim  K J, Borok  Z, Crandall  E D, Shen  W C. Conjugation with cationic cell-penetrating peptide increases pulmonary absorption of insulin. Molecular Pharmaceutics, 2009, 6(2): 492–503
https://doi.org/10.1021/mp800174g
42 Zaro  J L, Shen  W C. Quantitative comparison of membrane transduction and endocytosis of oligopeptides. Biochemical and Biophysical Research Communications, 2003, 307(2): 241–247
https://doi.org/10.1016/S0006-291X(03)01167-7
43 Zaro  J L, Shen  W C. Evidence that membrane transduction of oligoarginine does not require vesicle formation. Experimental Cell Research, 2005, 307(1): 164–173
https://doi.org/10.1016/j.yexcr.2005.02.024
44 Park  Y J, Chang  L C, Liang  J F, Moon  C, Chung  C P, Yang  V C. Nontoxic membrane translocation peptide from protamine, low molecular weight protamine (LMWP), for enhanced intracellular protein delivery: in vitro and in vivo study. FASEB Journal, 2005, 19(11): 1555–1557
45 Wu  F L, Yeh  T H, Chen  Y L, Chiu  Y C, Cheng  J C, Wei  M F, Shen  L J. Intracellular delivery of recombinant arginine deiminase (rADI) by heparin-binding hemagglutinin adhesion peptide restores sensitivity in rADI-resistant cancer cells. Molecular Pharmaceutics, 2014, 11(8): 2777–2786
https://doi.org/10.1021/mp5001372
46 Yang  Z, Jiang  Z, Cao  Z, Zhang  C, Gao  D, Luo  X, Zhang  X, Luo  H, Jiang  Q, Liu  J. Multifunctional non-viral gene vectors with enhanced stability, improved cellular and nuclear uptake capability, and increased transfection efficiency. Nanoscale, 2014, 6(17): 10193–10206
https://doi.org/10.1039/C4NR02395A
47 Morris  M C, Depollier  J, Mery  J, Heitz  F, Divita  G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nature Biotechnology, 2001, 19(12): 1173–1176
https://doi.org/10.1038/nbt1201-1173
48 Kurzawa  L, Pellerano  M, Morris  M C. PEP and CADY-mediated delivery of fluorescent peptides and proteins into living cells. Biochimica et Biophysica Acta, 2010, 1798(12): 2274–2285
https://doi.org/10.1016/j.bbamem.2010.02.027
49 Lin  Y Z, Yao  S Y, Veach  R A, Torgerson  T R, Hawiger  J. Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. Journal of Biological Chemistry, 1995, 270(24): 14255–14258
https://doi.org/10.1074/jbc.270.24.14255
50 Soomets  U, Lindgren  M, Gallet  X, Hallbrink  M, Elmquist  A, Balaspiri  L, Zorko  M, Pooga  M, Brasseur  R, Langel  U. Deletion analogues of transportan. Biochimica et Biophysica Acta, 2000, 1467(1): 165–176
https://doi.org/10.1016/S0005-2736(00)00216-9
51 Kobayashi  S, Nakase  I, Kawabata  N, Yu  H H, Pujals  S, Imanishi  M, Giralt  E, Futaki  S. Cytosolic targeting of macromolecules using a pH-dependent fusogenic peptide in combination with cationic liposomes. Bioconjugate Chemistry, 2009, 20(5): 953–959
https://doi.org/10.1021/bc800530v
52 El-Sayed  A, Futaki  S, Harashima  H. Delivery of macromolecules using arginine-rich cell-penetrating peptides: Ways to overcome endosomal entrapment. AAPS Journal, 2009, 11(1): 13–22
https://doi.org/10.1208/s12248-008-9071-2
53 Wyman  T B, Nicol  F, Zelphati  O, Scaria  P V, Plank  C, Szoka  F C J. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry, 1997, 36(10): 3008–3017
https://doi.org/10.1021/bi9618474
54 Wada  S, Tsuda  H, Okada  T, Urata  H. Cellular uptake of aib-containing amphipathic helix peptide. Bioorganic & Medicinal Chemistry Letters, 2011, 21(19): 5688–5691
https://doi.org/10.1016/j.bmcl.2011.08.030
55 Zaro  J L, Vekich  J E, Tran  T, Shen  W C. Nuclear localization of cell-penetrating peptides is dependent on endocytosis rather than cytosolic delivery in CHO cells. Molecular Pharmaceutics, 2009, 6(2): 337–344
https://doi.org/10.1021/mp800239p
56 Gomez  J A, Chen  J, Ngo  J, Hajkova  D, Yeh  I J, Gama  V, Miyagi  M, Matsuyama  S. Cell-penetrating penta-peptides (CPP5s): Measurement of cell entry and protein-transduction activity. Pharmaceuticals (Basel, Switzerland), 2010, 3(12): 3594–3613
https://doi.org/10.3390/ph3123594
57 Fretz  M M, Penning  N A, Al-Taei  S, Futaki  S, Takeuchi  T, Nakase  I, Storm  G, Jones  A T. Temperature, concentration- and cholesterol-dependent translocation of L- and D-octa-arginine across the plasma and nuclear membrane of CD34+ leukaemia cells. Biochemical Journal, 2007, 403(2): 335–342
https://doi.org/10.1042/BJ20061808
58 Zaro  J L, Rajapaksa  T E, Okamoto  C T, Shen  W C. Membrane transduction of oligoarginine in HeLa cells is not mediated by macropinocytosis. Molecular Pharmaceutics, 2006, 3(2): 181–186
https://doi.org/10.1021/mp0500869
59 Cohen-Avrahami  M, Libster  D, Aserin  A, Garti  N. Sodium diclofenac and cell-penetrating peptides embedded in H(II) mesophases: Physical characterization and delivery. Journal of Physical Chemistry B, 2011, 115(34): 10189–10197
https://doi.org/10.1021/jp112067v
60 Sheng  J, Oyler  G, Zhou  B, Janda  K, Shoemaker  C B. Identification and characterization of a novel cell-penetrating peptide. Biochemical and Biophysical Research Communications, 2009, 382(2): 236–240
https://doi.org/10.1016/j.bbrc.2008.11.139
61 Shen  W C, Ryser  H J. Conjugation of poly-L-lysine to albumin and horseradish peroxidase: A novel method of enhancing the cellular uptake of proteins. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(4): 1872–1876
https://doi.org/10.1073/pnas.75.4.1872
62 Ryser  H J, Shen  W C, Merk  F B. Membrane transport of macromolecules: New carrier functions of proteins and poly(amino acids). Life Sciences, 1978, 22(13–15): 1253–1260
https://doi.org/10.1016/0024-3205(78)90094-2
63 Pardridge  W M, Buciak  J L, Kang  Y S, Boado  R J. Protamine-mediated transport of albumin into brain and other organs of the rat. Binding and endocytosis of protamine-albumin complex by microvascular endothelium. Journal of Clinical Investigation, 1993, 92(5): 2224–2229
https://doi.org/10.1172/JCI116825
64 Wu  G Y, Wu  C H. Evidence for targeted gene delivery to Hep G2 hepatoma cells in vitro. Biochemistry, 1988, 27(3): 887–892
https://doi.org/10.1021/bi00403a008
65 Cotten  M, Langle-Rouault  F, Kirlappos  H, Wagner  E, Mechtler  K, Zenke  M, Beug  H, Birnstiel  M L. Transferrin-polycation-mediated introduction of DNA into human leukemic cells: Stimulation by agents that affect the survival of transfected DNA or modulate transferrin receptor levels. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(11): 4033–4037
https://doi.org/10.1073/pnas.87.11.4033
66 Ryser  H J, Shen  W C. Conjugation of methotrexate to poly(L-lysine) increases drug transport and overcomes drug resistance in cultured cells. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(8): 3867–3870
https://doi.org/10.1073/pnas.75.8.3867
67 Shen  W C, Ryser  H J. Poly (L-lysine) and poly (D-lysine) conjugates of methotrexate: Different inhibitory effect on drug resistant cells. Molecular Pharmacology, 1979, 16(2): 614–622
68 Ryser  H J, Shen  W C. Conjugation of methotrexate to poly (L-lysine) as a potential way to overcome drug resistance. Cancer, 1980, 45(5 Suppl): 1207–1211
https://doi.org/10.1002/1097-0142(19800315)45:5+<1207::AID-CNCR2820451327>3.0.CO;2-M
69 Han  K, Jeon  M J, Kim  S H, Ki  D, Bahn  J H, Lee  K S, Park  J, Choi  S Y. Efficient intracellular delivery of an exogenous protein GFP with genetically fused basic oligopeptides. Molecules and Cells, 2001, 12(2): 267–271
70 Rothbard  J B, Jessop  T C, Lewis  R S, Murray  B A, Wender  P A. Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. Journal of the American Chemical Society, 2004, 126(31): 9506–9507
https://doi.org/10.1021/ja0482536
71 Goncalves  E, Kitas  E, Seelig  J. Binding of oligoarginine to membrane lipids and heparan sulfate: Structural and thermodynamic characterization of a cell-penetrating peptide. Biochemistry, 2005, 44(7): 2692–2702
https://doi.org/10.1021/bi048046i
72 Gelman  R A, Glaser  D N, Blackwell  J. Interaction between chondroitin-6-sulfate and poly-L-arginine in aqueous solution. Biopolymers, 1973, 12(6): 1223–1232
https://doi.org/10.1002/bip.1973.360120603
73 Richard  J P, Melikov  K, Brooks  H, Prevot  P, Lebleu  B, Chernomordik  L V. Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. Journal of Biological Chemistry, 2005, 280(15): 15300–15306
https://doi.org/10.1074/jbc.M401604200
74 Jiao  C Y, Delaroche  D, Burlina  F, Alves  I D, Chassaing  G, Sagan  S. Translocation and endocytosis for cell-penetrating peptide internalization. Journal of Biological Chemistry, 2009, 284(49): 33957–33965
https://doi.org/10.1074/jbc.M109.056309
75 Zaro  J L, Shen  W C. Cytosolic delivery of a p16-peptide oligoarginine conjugate for inhibiting proliferation of MCF7 cells. Journal of Controlled Release, 2005, 108(2–3): 409–417
https://doi.org/10.1016/j.jconrel.2005.08.028
76 Fei  L, Ren  L, Zaro  J L, Shen  W C. The influence of net charge and charge distribution on cellular uptake and cytosolic localization of arginine-rich peptides. Journal of Drug Targeting, 2011, 19(8): 675–680
https://doi.org/10.3109/1061186X.2010.531729
77 Law  M, Jafari  M, Chen  P. Physicochemical characterization of siRNA-peptide complexes. Biotechnology Progress, 2008, 24(4): 957–963
https://doi.org/10.1002/btpr.13
78 Pace  C N, Scholtz  J M. A helix propensity scale based on experimental studies of peptides and proteins. Biophysical Journal, 1998, 75(1): 422–442, 7
https://doi.org/10.1016/S0006-3495(98)77529-0
79 Hong  M, Su  Y. Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR. Protein Science, 2011, 20(4): 641–655
https://doi.org/10.1002/pro.600
80 Di Pisa  M, Chassaing  G, Swiecicki  J M. Translocation mechanism(s) of cell-penetrating peptides: Biophysical studies using artificial membrane bilayers. Biochemistry, 2015, 54(2): 194–207
https://doi.org/10.1021/bi501392n
81 Gelman  R A, Blackwell  J. Heparin-polypeptide interactions in aqueous solution. Archives of Biochemistry and Biophysics, 1973, 159(1): 427–433
https://doi.org/10.1016/0003-9861(73)90470-0
82 Shen  W C, Ryser  H J. Poly(L-lysine) has different membrane transport and drug-carrier properties when complexed with heparin. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(12): 7589–7593
https://doi.org/10.1073/pnas.78.12.7589
83 Su  Y, Doherty  T, Waring  A J, Ruchala  P, Hong  M. Roles of arginine and lysine residues in the translocation of a cell-penetrating peptide from (13)C, (31)P, and (19)F solid-state NMR. Biochemistry, 2009, 48(21): 4587–4595
https://doi.org/10.1021/bi900080d
84 Clark  K S, Svetlovics  J, McKeown  A N, Huskins  L, Almeida  P F. What determines the activity of antimicrobial and cytolytic peptides in model membranes. Biochemistry, 2011, 50(37): 7919–7932
https://doi.org/10.1021/bi200873u
85 Alves  I D, Goasdoue  N, Correia  I, Aubry  S, Galanth  C, Sagan  S, Lavielle  S, Chassaing  G. Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution. Biochimica et Biophysica Acta, 2008, 1780(7–8): 948–959
https://doi.org/10.1016/j.bbagen.2008.04.004
86 Derossi  D, Joliot  A H, Chassaing  G, Prochiantz  A. The third helix of the Antennapedia homeodomain translocates through biological membranes. Journal of Biological Chemistry, 1994, 269(14): 10444–10450
87 Kaplan  I M, Wadia  J S, Dowdy  S F. Cationic TAT peptide transduction domain enters cells by macropinocytosis. Journal of Controlled Release, 2005, 102(1): 247–253
https://doi.org/10.1016/j.jconrel.2004.10.018
88 Wadia  J S, Stan  R V, Dowdy  S F. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nature Medicine, 2004, 10(3): 310–315
https://doi.org/10.1038/nm996
89 Yesylevskyy  S, Marrink  S J, Mark  A E. Alternative mechanisms for the interaction of the cell-penetrating peptides penetratin and the TAT peptide with lipid bilayers. Biophysical Journal, 2009, 97(1): 40–49
https://doi.org/10.1016/j.bpj.2009.03.059
90 Fittipaldi  A, Ferrari  A, Zoppe  M, Arcangeli  C, Pellegrini  V, Beltram  F, Giacca  M. Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. Journal of Biological Chemistry, 2003, 278(36): 34141–34149
https://doi.org/10.1074/jbc.M303045200
91 Ferrari  M E, Nguyen  C M, Zelphati  O, Tsai  Y, Felgner  P L. Analytical methods for the characterization of cationic lipid-nucleic acid complexes. Human Gene Therapy, 1998, 9(3): 341–351
https://doi.org/10.1089/hum.1998.9.3-341
92 Qian  Z, LaRochelle  J R, Jiang  B, Lian  W, Hard  R L, Selner  N G, Luechapanichkul  R, Barrios  A M, Pei  D. Early endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery. Biochemistry, 2014, 53(24): 4034–4046
https://doi.org/10.1021/bi5004102
93 Lundberg  P, El-Andaloussi  S, Sutlu  T, Johansson  H, Langel  U. Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB Journal, 2007, 21(11): 2664–2671
https://doi.org/10.1096/fj.06-6502com
94 Yang  S T, Zaitseva  E, Chernomordik  L V, Melikov  K. Cell-penetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid. Biophysical Journal, 2010, 99(8): 2525–2533
https://doi.org/10.1016/j.bpj.2010.08.029
95 Deshayes  S, Plenat  T, Charnet  P, Divita  G, Molle  G, Heitz  F. Formation of transmembrane ionic channels of primary amphipathic cell-penetrating peptides. Consequences on the mechanism of cell penetration. Biochimica et Biophysica Acta, 2006, 1758(11): 1846–1851
https://doi.org/10.1016/j.bbamem.2006.08.010
96 Kenien  R, Shen  W C, Zaro  J L. Vesicle-to-cytosol transport of disulfide-linked cargo mediated by an amphipathic cell-penetrating peptide. Journal of Drug Targeting, 2012, 20(9): 793–800
https://doi.org/10.3109/1061186X.2012.719899
97 Kenien  R, Zaro  J L, Shen  W C. MAP-mediated nuclear delivery of a cargo protein. Journal of Drug Targeting, 2012, 20(4): 329–337
https://doi.org/10.3109/1061186X.2011.649481
98 Shai  Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica et Biophysica Acta, 1999, 1462(1–2): 55–70
https://doi.org/10.1016/S0005-2736(99)00200-X
99 Matsuzaki  K, Sugishita  K, Miyajima  K. Interactions of an antimicrobial peptide, magainin 2, with lipopolysaccharide-containing liposomes as a model for outer membranes of gram-negative bacteria. FEBS Letters, 1999, 449(2–3): 221–224
https://doi.org/10.1016/S0014-5793(99)00443-3
100 Yang  L, Harroun  T A, Weiss  T M, Ding  L, Huang  H W. Barrel-stave model or toroidal model? A case study on melittin pores. Biophysical Journal, 2001, 81(3): 1475–1485
https://doi.org/10.1016/S0006-3495(01)75802-X
101 Berlose  J P, Convert  O, Derossi  D, Brunissen  A, Chassaing  G. Conformational and associative behaviours of the third helix of antennapedia homeodomain in membrane-mimetic environments. European Journal of Biochemistry, 1996, 242(2): 372–386
https://doi.org/10.1111/j.1432-1033.1996.0372r.x
102 Mor  A, Nguyen  V H, Delfour  A, Migliore-Samour  D, Nicolas  P. Isolation, amino acid sequence, and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin. Biochemistry, 1991, 30(36): 8824–8830
https://doi.org/10.1021/bi00100a014
103 Matsuzaki  K, Murase  O, Fujii  N, Miyajima  K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry, 1996, 35(35): 11361–11368
https://doi.org/10.1021/bi960016v
104 Matsuzaki  K, Murase  O, Fujii  N, Miyajima  K. Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry, 1995, 34(19): 6521–6526
https://doi.org/10.1021/bi00019a033
105 Ludtke  S J, He  K, Heller  W T, Harroun  T A, Yang  L, Huang  H W. Membrane pores induced by magainin. Biochemistry, 1996, 35(43): 13723–13728
https://doi.org/10.1021/bi9620621
106 Brauner  J W, Mendelsohn  R, Prendergast  F G. Attenuated total reflectance Fourier transform infrared studies of the interaction of melittin, two fragments of melittin, and δ-hemolysin with phosphatidylcholines. Biochemistry, 1987, 26(25): 8151–8158
https://doi.org/10.1021/bi00399a020
107 Frey  S, Tamm  L K. Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study. Biophysical Journal, 1991, 60(4): 922–930
https://doi.org/10.1016/S0006-3495(91)82126-9
108 Mueller  J, Kretzschmar  I, Volkmer  R, Boisguerin  P. Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjugate Chemistry, 2008, 19(12): 2363–2374
https://doi.org/10.1021/bc800194e
109 Saar  K, Lindgren  M, Hansen  M, Eiriksdottir  E, Jiang  Y, Rosenthal-Aizman  K, Sassian  M, Langel  U. Cell-penetrating peptides: A comparative membrane toxicity study. Analytical Biochemistry, 2005, 345(1): 55–65
https://doi.org/10.1016/j.ab.2005.07.033
110 El-Andaloussi  S, Jarver  P, Johansson  H J, Langel  U. Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: A comparative study. Biochemical Journal, 2007, 407(2): 285–292
https://doi.org/10.1042/BJ20070507
111 Rothbard  J B, Jessop  T C, Lewis  R S, Murray  B A, Wender  P A. Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. Journal of the American Chemical Society, 2004, 126(31): 9506–9507
https://doi.org/10.1021/ja0482536
112 Zaro  J L, Shen  W C. Quantitative comparison of membrane transduction and endocytosis of oligopeptides. Biochemical and Biophysical Research Communications, 2003, 307(2): 241–247
https://doi.org/10.1016/S0006-291X(03)01167-7
113 Zaro  J L, Shen  W C. Evidence that membrane transduction of oligoarginine does not require vesicle formation. Experimental Cell Research, 2005, 307(1): 164–173
https://doi.org/10.1016/j.yexcr.2005.02.024
114 Patel  L N, Zaro  J L, Shen  W C. Cell penetrating peptides: Intracellular pathways and pharmaceutical perspectives. Pharmaceutical Research, 2007, 24(11): 1977–1992
https://doi.org/10.1007/s11095-007-9303-7
115 Sawant  R, Torchilin  V. Intracellular transduction using cell-penetrating peptides. Molecular BioSystems, 2010, 6(4): 628–640
https://doi.org/10.1039/B916297F
116 Schmidt  N, Mishra  A, Lai  G H, Wong  G C L. Arginine-rich cell-penetrating peptides. FEBS Letters, 2010, 584(9): 1806–1813
https://doi.org/10.1016/j.febslet.2009.11.046
117 Wender  P A, Galliher  W C, Goun  E A, Jones  L R, Pillow  T H. The design of guanidinium-rich transporters and their internalization mechanisms. Advanced Drug Delivery Reviews, 2008, 60(4–5): 452–472
https://doi.org/10.1016/j.addr.2007.10.016
118 Ziegler  A. Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Advanced Drug Delivery Reviews, 2008, 60(4–5): 580–597
https://doi.org/10.1016/j.addr.2007.10.005
119 Jiao  C Y, Delaroche  D, Burlina  F, Alves  I D, Chassaing  G, Sagan  S. Translocation and endocytosis for cell-penetrating peptideinternalization. Journal of Biological Chemistry, 2009, 284(49): 33957–33965
https://doi.org/10.1074/jbc.M109.056309
120 Herbig  M E, Weller  K M, Merkle  H P. Reviewing biophysical and cell biological methodologies in cell-penetrating peptide (CPP) research. Critical Reviews in Therapeutic Drug Carrier Systems, 2007, 24(3): 203–255
https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v24.i3.10
121 Shen  W C. Acid-sensitive dissociation between poly(lysine) and histamine-modified poly(glutamate) as a model for drug-releasing from carriers in endosomes. Biochimica et Biophysica Acta, 1990, 1034(1): 122–124
https://doi.org/10.1016/0304-4165(90)90163-Q
122 Fei  L, Yap  L P, Conti  P S, Shen  W C, Zaro  J L. Tumor targeting of a cell penetrating peptide by fusing with a pH-sensitive histidine-glutamate co-oligopeptide. Biomaterials, 2014, 35(13): 4082–4087
https://doi.org/10.1016/j.biomaterials.2014.01.047
123 Sun  C, Shen  W C, Tu  J, Zaro  J L. Interaction between cell-penetrating peptides and acid-sensitive anionic oligopeptides as a model for the design of targeted drug carriers. Molecular Pharmaceutics, 2014, 11(5): 1583–1590
https://doi.org/10.1021/mp400747k
124 Olson  E S, Aguilera  T A, Jiang  T, Ellies  L G, Nguyen  Q T, Wong  E H, Gross  L A, Tsien  R Y. In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer. Integrative Biology: Quantitative Biosciences from Nano to Macro, 2009, 1(5–6): 382–393
https://doi.org/10.1039/b904890a
125 Savariar  E N, Felsen  C N, Nashi  N, Jiang  T, Ellies  L G, Steinbach  P, Tsien  R Y, Nguyen  Q T. Real-time in vivo molecular detection of primary tumors and metastases with ratiometric activatable cell-penetrating peptides. Cancer Research, 2013, 73(2): 855–864
https://doi.org/10.1158/0008-5472.CAN-12-2969
126 Weinstain  R, Savariar  E N, Felsen  C N, Tsien  R Y. In vivo targeting of hydrogen peroxide by activatable cell-penetrating peptides. Journal of the American Chemical Society, 2014, 136(3): 874–877
https://doi.org/10.1021/ja411547j
127 Lee  S H, Castagner  B, Leroux  J C. Is there a future for cell-penetrating peptides in oligonucleotide delivery? European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85(1): 5–11
https://doi.org/10.1016/j.ejpb.2013.03.021
128 Crombez  L, Aldrian-Herrada  G, Konate  K, Nguyen  Q N, McMaster  G K, Brasseur  R, Heitz  F, Divita  G. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Molecular Therapy, 2009, 17(1): 95–103
https://doi.org/10.1038/mt.2008.215
129 Dubikovskaya  E A, Thorne  S H, Pillow  T H, Contag  C H, Wender  P A. Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(34): 12128–12133
https://doi.org/10.1073/pnas.0805374105
130 Liu  H, Zhang  W, Ma  L, Fan  L, Gao  F, Ni  J, Wang  R. The improved blood-brain barrier permeability of endomorphin-1 using the cell-penetrating peptide synB3 with three different linkages. International Journal of Pharmaceutics, 2014, 476(1–2): 1–8
https://doi.org/10.1016/j.ijpharm.2014.08.045
131 Hauff  S J, Raju  S C, Orosco  R K, Gross  A M, Diaz-Perez  J A, Savariar  E, Nashi  N, Hasselman  J, Whitney  M, Myers  J N, Lippman  S M, Tsien  R Y, Ideker  T, Nguyen  Q T. Matrix-metalloproteinases in head and neck carcinoma-cancer genome atlas analysis and fluorescence imaging in mice. Otolaryngology- Head and Neck Surgery, 2014, 151(4): 612–618
https://doi.org/10.1177/0194599814545083
132 Gotanda  Y, Wei  F Y, Harada  H, Ohta  K, Nakamura  K, Tomizawa  K, Ushijima  K. Efficient transduction of 11 poly-arginine peptide in an ischemic lesion of mouse brain. Journal of Stroke and Cerebrovascular Diseases, 2014, 23(8): 2023–2030
https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.02.027
133 van Duijnhoven  S M, Robillard  M S, Hermann  S, Kuhlmann  M T, Schafers  M, Nicolay  K, Grull  H. Imaging of MMP activity in postischemic cardiac remodeling using radiolabeled MMP-2/9 activatable peptide probes. Molecular Pharmaceutics, 2014, 11(5): 1415–1423
https://doi.org/10.1021/mp400569k
134 Neundorf  I, Rennert  R, Franke  J, Kozle  I, Bergmann  R. Detailed analysis concerning the biodistribution and metabolism of human calcitonin-derived cell-penetrating peptides. Bioconjugate Chemistry, 2008, 19(8): 1596–1603
https://doi.org/10.1021/bc800149f
135 Weiss  H M, Wirz  B, Schweitzer  A, Amstutz  R, Rodriguez Perez  M I, Andres  H, Metz  Y, Gardiner  J, Seebach  D. ADME investigations of unnatural peptides: Distribution of a 14C-labeled β 3-octaarginine in rats. Chemistry & Biodiversity, 2007, 4(7): 1413–1437
https://doi.org/10.1002/cbdv.200790121
136 Sehgal  I, Sibrian-Vazquez  M, Vicente  M G. Photoinduced cytotoxicity and biodistribution of prostate cancer cell-targeted porphyrins. Journal of Medicinal Chemistry, 2008, 51(19): 6014–6020
https://doi.org/10.1021/jm800444c
137 Felsen  C N, Savariar  E N, Whitney  M, Tsien  R Y. Detection and monitoring of localized matrix metalloproteinase upregulation in a murine model of asthma. American Journal of Physiology. Lung Cellular and Molecular Physiology, 2014, 306(8): L764–L774
https://doi.org/10.1152/ajplung.00371.2013
138 Michiue  H, Sakurai  Y, Kondo  N, Kitamatsu  M, Bin  F, Nakajima  K, Hirota  Y, Kawabata  S, Nishiki  T, Ohmori  I, Tomizawa  K, Miyatake  S, Ono  K, Matsui  H. The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide. Biomaterials, 2014, 35(10): 3396–3405
https://doi.org/10.1016/j.biomaterials.2013.12.055
139 Temming  R P, Eggermont  L, van Eldijk  M B, van Hest  J C, van Delft  F L. N-Terminal dual protein functionalization by strain-promoted alkyne-nitrone cycloaddition. Organic & Biomolecular Chemistry, 2013, 11(17): 2772–2779
https://doi.org/10.1039/c3ob00043e
140 Shen  W C, Ryser  H J. Cis-Aconityl spacer between daunomycin and macromolecular carriers: A model of pH-sensitive linkage releasing drug from a lysosomotropic conjugate. Biochemical and Biophysical Research Communications, 1981, 102(3): 1048–1054
https://doi.org/10.1016/0006-291X(81)91644-2
141 Walker  L, Perkins  E, Kratz  F, Raucher  D. Cell penetrating peptides fused to a thermally targeted biopolymer drug carrier improve the delivery and antitumor efficacy of an acid-sensitive doxorubicin derivative. International Journal of Pharmaceutics, 2012, 436(1–2): 825–832
https://doi.org/10.1016/j.ijpharm.2012.07.043
142 Nakase  I, Konishi  Y, Ueda  M, Saji  H, Futaki  S. Accumulation of arginine-rich cell-penetrating peptides in tumors and the potential for anticancer drug delivery in vivo. Journal of Controlled Release, 2012, 159(2): 181–188
https://doi.org/10.1016/j.jconrel.2012.01.016
143 Vives  E. Present and future of cell-penetrating peptide mediated delivery systems: Is the Trojan horse too wild to go only to Troy? Journal of Controlled Release, 2005, 109(1–3): 77–85
https://doi.org/10.1016/j.jconrel.2005.09.032
144 Vives  E, Schmidt  J, Pelegrin  A. Cell-penetrating and cell-targeting peptides in drug delivery. Biochimica et Biophysica Acta, 2008, 1786(2): 126–138
145 Heitz  F, Morris  M C, Divita  G. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. British Journal of Pharmacology, 2009, 157(2): 195–206
https://doi.org/10.1111/j.1476-5381.2009.00057.x
146 Sarko  D, Beijer  B, Garcia  B R, Nothelfer  E M, Leotta  K, Eisenhut  M, Altmann  A, Haberkorn  U, Mier  W. The pharmacokinetics of cell-penetrating peptides. Molecular Pharmaceutics, 2010, 7(6): 2224–2231
https://doi.org/10.1021/mp100223d
147 Hamann  P R, Hinman  L M, Beyer  C F, Lindh  D, Upeslacis  J, Flowers  D A, Bernstein  I. An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjugate Chemistry, 2002, 13(1): 40–46
https://doi.org/10.1021/bc0100206
148 Anderson  D C, Nichols  E, Manger  R, Woodle  D, Barry  M, Fritzberg  A R. Tumor cell retention of antibody Fab fragments is enhanced by an attached HIV TAT protein-derived peptide. Biochemical and Biophysical Research Communications, 1993, 194(2): 876–884
https://doi.org/10.1006/bbrc.1993.1903
149 Trudel  D, Fradet  Y, Meyer  F, Harel  F, Tetu  B. Significance of MMP-2 expression in prostate cancer: An immunohistochemical study. Cancer Research, 2003, 63(23): 8511–8515
150 Turpeenniemi-Hujanen  T. Gelatinases (MMP-2 and-9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie, 2005, 87(3–4): 287–297
https://doi.org/10.1016/j.biochi.2005.01.014
151 Gerweck  L E, Seetharaman  K. Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Research, 1996, 56(6): 1194–1198
152 Getzenberg  R H, Coffey  D S, DeWeese  T L. Hyperthermic biology and cancer therapies a hypothesis for the “Lance Armstrong effect”. Journal of the American Medical Association, 2006, 296(4): 445–448
https://doi.org/10.1001/jama.296.4.445
153 Denko  N, Cairns  R, Papandreou  I. Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Molecular Cancer Research, 2006, 4(2): 61–70
https://doi.org/10.1158/1541-7786.MCR-06-0002
154 Crisp  J L, Savariar  E N, Glasgow  H L, Ellies  L G, Whitney  M A, Tsien  R Y. Dual targeting of integrin αvβ3 and matrix metalloproteinase-2 for optical imaging of tumors and chemotherapeutic delivery. Molecular Cancer Therapeutics, 2014, 13(6): 1514–1525
https://doi.org/10.1158/1535-7163.MCT-13-1067
155 Nguyen  Q T, Olson  E S, Aguilera  T A, Jiang  T, Scadeng  M, Ellies  L G, Tsien  R Y. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(9): 4317–4322
https://doi.org/10.1073/pnas.0910261107
156 van Duijnhoven  S M, Robillard  M S, Nicolay  K, Grull  H. Tumor targeting of MMP-2/9 activatable cell-penetrating imaging probes is caused by tumor-independent activation. Journal of Nuclear Medicine, 2011, 52(2): 279–286
https://doi.org/10.2967/jnumed.110.082503
157 Zaro  J L, Fei  L, Shen  W C. Recombinant peptide constructs for targeted cell penetrating peptide-mediated delivery. Journal of Controlled Release, 2012, 158(3): 357–361
https://doi.org/10.1016/j.jconrel.2012.01.039
158 Zhu  L, Kate  P, Torchilin  V P. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano, 2012, 6(4): 3491–3498
https://doi.org/10.1021/nn300524f
159 Apte  A, Koren  E, Koshkaryev  A, Torchilin  V P. Doxorubicin in TAT peptide-modified multifunctional immunoliposomes demonstrates increased activity against both drug-sensitive and drug-resistant ovarian cancer models. Cancer Biology & Therapy, 2014, 15(1): 69–80
https://doi.org/10.4161/cbt.26609
160 Leader  B, Baca  Q J, Golan  D E. Protein therapeutics: A summary and pharmacological classification. Nature Reviews. Drug Discovery, 2008, 7(1): 21–39
https://doi.org/10.1038/nrd2399
161 He  H, Sheng  J, David  A E, Kwon  Y M, Zhang  J, Huang  Y, Wang  J, Yang  V C. The use of low molecular weight protamine chemical chimera to enhance monomeric insulin intestinal absorption. Biomaterials, 2013, 34(31): 7733–7743
https://doi.org/10.1016/j.biomaterials.2013.06.047
162 Liang  J F, Yang  V C. Insulin-cell penetrating peptide hybrids with improved intestinal absorption efficiency. Biochemical and Biophysical Research Communications, 2005, 335(3): 734–738
https://doi.org/10.1016/j.bbrc.2005.07.142
163 Liu  E, Sheng  J, Ye  J, Wang  Y, Gong  J, Yang  V C, Wang  J, He  H. CPP mediated insulin delivery: Current status and promising future. Current Pharmaceutical Biotechnology, 2014, 15(3): 240–255
https://doi.org/10.2174/1389201015666140813125840
164 Fei  L. Cell Penetrating Peptide-Based Drug Delivery System for Targeting Mildly Acidic pH. Dissertation for the Doctoral Degree. California: University of Southern California, 2014
165 Chen  X, Zaro  J L, Shen  W C. Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 2013, 65(10): 1357–1369
https://doi.org/10.1016/j.addr.2012.09.039
166 Almeida  P F. Membrane-active peptides: Binding, translocation, and flux in lipid vesicles. Biochimica et Biophysica Acta, 2014, 1838(9): 2216–2227
https://doi.org/10.1016/j.bbamem.2014.04.014
167 Shin  M C, Zhang  J, Min  K A, Lee  K, Moon  C, Balthasar  J P, Yang  V C. Combination of antibody targeting and PTD-mediated intracellular toxin delivery for colorectal cancer therapy. Journal of Controlled Release, 2014, 194: 197–210
https://doi.org/10.1016/j.jconrel.2014.08.030
168 Xu  J, Xiang  Q, Su  J, Yang  P, Zhang  Q, Su  Z, Xiao  F, Huang  Y. Evaluation of the safety and brain-related tissues distribution characteristics of TAT-HaFGF via intranasal administration. Biological & Pharmaceutical Bulletin, 2014, 37(7): 1149–1157
https://doi.org/10.1248/bpb.b14-00023
169 Cai  S R, Xu  G, Becker-Hapak  M, Ma  M, Dowdy  S F, McLeod  H L. The kinetics and tissue distribution of protein transduction in mice. European Journal of Pharmaceutical Sciences, 2006, 27(4): 311–319
https://doi.org/10.1016/j.ejps.2005.10.011
170 Cerchietti  L C, Yang  S N, Shaknovich  R, Hatzi  K, Polo  J M, Chadburn  A, Dowdy  S F, Melnick  A. A peptomimetic inhibitor of BCL6 with potent antilymphoma effects in vitro and in vivo. Blood, 2009, 113(15): 3397–3405
https://doi.org/10.1182/blood-2008-07-168773
171 Bowne  W B, Michl  J, Bluth  M H, Zenilman  M E, Pincus  M R. Novel peptides from the RAS-p21 and p53 proteins for the treatment of cancer. Cancer Therapy, 2007, 5B: 331–344
172 Kwon  M K, Nam  J O, Park  R W, Lee  B H, Park  J Y, Byun  Y R, Kim  S Y, Kwon  I C, Kim  I S. Antitumor effect of a transducible fusogenic peptide releasing multiple proapoptotic peptides by caspase-3. Molecular Cancer Therapeutics, 2008, 7(6): 1514–1522
https://doi.org/10.1158/1535-7163.MCT-07-2009
173 Tan  M, Lan  K H, Yao  J, Lu  C H, Sun  M, Neal  C L, Lu  J, Yu  D. Selective inhibition of ErbB2-overexpressing breast cancer in vivo by a novel TAT-based ErbB2-targeting signal transducers and activators of transcription 3-blocking peptide. Cancer Research, 2006, 66(7): 3764–3772
https://doi.org/10.1158/0008-5472.CAN-05-2747
174 Shibata  W, Maeda  S, Hikiba  Y, Yanai  A, Ohmae  T, Sakamoto  K, Nakagawa  H, Ogura  K, Omata  M. Cutting edge: The IkappaB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks inflammatory injury in murine colitis. Journal of Immunology, 2007, 179(5): 2681–2685
https://doi.org/10.4049/jimmunol.179.5.2681
175 Ghosh  A, Roy  A, Liu  X, Kordower  J H, Mufson  E J, Hartley  D M, Ghosh  S, Mosley  R L, Gendelman  H E, Pahan  K. Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(47): 18754–18759
https://doi.org/10.1073/pnas.0704908104
176 Hotchkiss  R S, McConnell  K W, Bullok  K, Davis  C G, Chang  K C, Schwulst  S J, Dunne  J C, Dietz  G P, Bahr  M, McDunn  J E, Karl  I E, Wagner  T H, Cobb  J P, Coopersmith  C M, Piwnica-Worms  D. TAT-BH4 and TAT-Bcl-xL peptides protect against sepsis-induced lymphocyte apoptosis in vivo. Journal of Immunology (Baltimore, MD.: 1950), 2006, 176(9): 5471–5477
https://doi.org/10.4049/jimmunol.176.9.5471
177 McCusker  C T, Wang  Y, Shan  J, Kinyanjui  M W, Villeneuve  A, Michael  H, Fixman  E D. Inhibition of experimental allergic airways disease by local application of a cell-penetrating dominant-negative STAT-6 peptide. Journal of Immunology, 2007, 179(4): 2556–2564
https://doi.org/10.4049/jimmunol.179.4.2556
178 Walker  L R, Ryu  J S, Perkins  E, McNally  L R, Raucher  D. Fusion of cell-penetrating peptides to thermally responsive biopolymer improves tumor accumulation of p21 peptide in a mouse model of pancreatic cancer. Drug Design, Development and Therapy, 2014, 8: 1649–1658
https://doi.org/10.2147/DDDT.S60451
179 Qiu  X, Johnson  J R, Wilson  B S, Gammon  S T, Piwnica-Worms  D, Barnett  E M. Single-cell resolution imaging of retinal ganglion cell apoptosis in vivo using a cell-penetrating caspase-activatable peptide probe. PLoS One, 2014, 9(2): e88855
https://doi.org/10.1371/journal.pone.0088855
180 He  X H, Yan  X T, Wang  Y L, Wang  C Y, Zhang  Z Z, Zhan  J. Transduced PEP-1-heme oxygenase-1 fusion protein protects against intestinal ischemia/reperfusion injury. Journal of Surgical Research, 2014, 187(1): 77–84
https://doi.org/10.1016/j.jss.2013.09.040
181 He  X H, Wang  Y, Yan  X T, Wang  Y L, Wang  C Y, Zhang  Z Z, Li  H, Jiang  H X. Transduction of PEP-1-heme oxygenase-1 fusion protein reduces myocardial ischemia/reperfusion injury in rats. Journal of Cardiovascular Pharmacology, 2013, 62(5): 436–442
https://doi.org/10.1097/FJC.0b013e3182a0b638
182 McCarthy  H O, McCaffrey  J, McCrudden  C M, Zholobenko  A, Ali  A A, McBride  J W, Massey  A S, Pentlavalli  S, Chen  K H, Cole  G, Loughran  S P, Dunne  N J, Donnelly  R F, Kett  V L, Robson  T. Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. Journal of Controlled Release, 2014, 189: 141–149
https://doi.org/10.1016/j.jconrel.2014.06.048
183 Wang  H, Wang  H, Liang  J, Jiang  Y, Guo  Q, Peng  H, Xu  Q, Huang  Y. Cell-penetrating apoptotic peptide/p53 DNA nanocomplex as adjuvant therapy for drug-resistant breast cancer. Molecular Pharmaceutics, 2014, 11(10): 3352–3360
https://doi.org/10.1021/mp5001058
184 Hu  Y, Xu  B, Ji  Q, Shou  D, Sun  X, Xu  J, Gao  J, Liang  W. A mannosylated cell-penetrating peptide-graft-polyethylenimine as a gene delivery vector. Biomaterials, 2014, 35(13): 4236–4246
https://doi.org/10.1016/j.biomaterials.2014.01.065
185 Wang  H X, Yang  X Z, Sun  C Y, Mao  C Q, Zhu  Y H, Wang  J. Matrix metalloproteinase 2-responsive micelle for siRNA delivery. Biomaterials, 2014, 35(26): 7622–7634
https://doi.org/10.1016/j.biomaterials.2014.05.050
186 Nielsen  E J, Yoshida  S, Kamei  N, Iwamae  R, Khafagy  E S, Olsen  J, Rahbek  U L, Pedersen  B L, Takayama  K, Takeda-Morishita  M. Khafagy el  S, Olsen  J, Rahbek  U L, Pedersen  B L, Takayama  K, Takeda-Morishita  M. in vivo proof of concept of oral insulin delivery based on a co-administration strategy with the cell-penetrating peptide penetratin. Journal of Controlled Release, 2014, 189: 19–24
https://doi.org/10.1016/j.jconrel.2014.06.022
187 Manosroi  J, Lohcharoenkal  W, Gotz  F, Werner  R G, Manosroi  W, Manosroi  A. Novel application of polioviral capsid: Development of a potent and prolonged oral calcitonin using polioviral binding ligand and Tat peptide. Drug Development and Industrial Pharmacy, 2014, 40(8): 1092–1100
https://doi.org/10.3109/03639045.2013.809533
188 Wiethoff  C M, Middaugh  C R. Barriers to nonviral gene delivery. Journal of Pharmaceutical Sciences, 2003, 92(2): 203–217
https://doi.org/10.1002/jps.10286
189 Nam  H Y, Kim  J, Kim  S, Yockman  J W, Kim  S W, Bull  D A. Cell penetrating peptide conjugated bioreducible polymer for siRNA delivery. Biomaterials, 2011, 32(22): 5213–5222
https://doi.org/10.1016/j.biomaterials.2011.03.058
190 Mo  R H, Zaro  J L, Shen  W C. Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy. Molecular Pharmaceutics, 2012, 9(2): 299–309
https://doi.org/10.1021/mp200481g
191 Margus  H, Padari  K, Pooga  M. Cell-penetrating peptides as versatile vehicles for oligonucleotide delivery. Molecular Therapy, 2012, 20(3): 525–533
https://doi.org/10.1038/mt.2011.284
192 Amidon  G L, Lee  H J. Absorption of peptide and peptidomimetic drugs. Annual Review of Pharmacology and Toxicology, 1994, 34(1): 321–341
https://doi.org/10.1146/annurev.pa.34.040194.001541
193 Farkhani  S M, Valizadeh  A, Karami  H, Mohammadi  S, Sohrabi  N, Badrzadeh  F. Cell penetrating peptides: Efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides, 2014, 57: 78–94
https://doi.org/10.1016/j.peptides.2014.04.015
194 Cleal  K, He  L, Watson  P D, Jones  A T. Endocytosis, intracellular traffic and fate of cell penetrating peptide based conjugates and nanoparticles. Current Pharmaceutical Design, 2013, 19(16): 2878–2894
https://doi.org/10.2174/13816128113199990297
195 Zhang  B, Zhang  Y, Liao  Z, Jiang  T, Zhao  J, Tuo  Y, She  X, Shen  S, Chen  J, Zhang  Q, Jiang  X, Hu  Y, Pang  Z. UPA-sensitive ACPP-conjugated nanoparticles for multi-targeting therapy of brain glioma. Biomaterials, 2015, 36: 98–109
https://doi.org/10.1016/j.biomaterials.2014.09.008
196 Mei  L, Zhang  Q, Yang  Y, He  Q, Gao  H. Angiopep-2 and activatable cell penetrating peptide dual modified nanoparticles for enhanced tumor targeting and penetrating. International Journal of Pharmaceutics, 2014, 474(1–2): 95–102
https://doi.org/10.1016/j.ijpharm.2014.08.020
197 Fan  T, Chen  C, Guo  H, Xu  J, Zhang  J, Zhu  X, Yang  Y, Zhou  Z, Li  L, Huang  Y. Design and evaluation of solid lipid nanoparticles modified with peptide ligand for oral delivery of protein drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88(2): 518–528
https://doi.org/10.1016/j.ejpb.2014.06.011
198 Huang  A, Su  Z, Li  S, Sun  M, Xiao  Y, Ping  Q, Deng  Y. Oral absorption enhancement of salmon calcitonin by using both N-trimethyl chitosan chloride and oligoarginines-modified liposomes as the carriers. Drug Delivery, 2014, 21(5): 388–396
https://doi.org/10.3109/10717544.2013.848247
199 Gao  H, Zhang  S, Cao  S, Yang  Z, Pang  Z, Jiang  X. Angiopep-2 and activatable cell-penetrating peptide dual-functionalized nanoparticles for systemic glioma-targeting delivery. Molecular Pharmaceutics, 2014, 11(8): 2755–2763
https://doi.org/10.1021/mp500113p
200 Yang  Y, Yang  Y, Xie  X, Cai  X, Zhang  H, Gong  W, Wang  Z, Mei  X. PEGylated liposomes with NGR ligand and heat-activable cell-penetrating peptide-doxorubicin conjugate for tumor-specific therapy. Biomaterials, 2014, 35(14): 4368–4381
https://doi.org/10.1016/j.biomaterials.2014.01.076
201 Zong  T, Mei  L, Gao  H, Cai  W, Zhu  P, Shi  K, Chen  J, Wang  Y, Gao  F, He  Q. Synergistic dual-ligand doxorubicin liposomes improve targeting and therapeutic efficacy of brain glioma in animals. Molecular Pharmaceutics, 2014, 11(7): 2346–2357
https://doi.org/10.1021/mp500057n
202 Liu  Y, Ran  R, Chen  J, Kuang  Q, Tang  J, Mei  L, Zhang  Q, Gao  H, Zhang  Z, He  Q. Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. Biomaterials, 2014, 35(17): 4835–4847
https://doi.org/10.1016/j.biomaterials.2014.02.031
203 Tang  J, Zhang  L, Liu  Y, Zhang  Q, Qin  Y, Yin  Y, Yuan  W, Yang  Y, Xie  Y, Zhang  Z, He  Q. Synergistic targeted delivery of payload into tumor cells by dual-ligand liposomes co-modified with cholesterol anchored transferrin and TAT. International Journal of Pharmaceutics, 2013, 454(1): 31–40
https://doi.org/10.1016/j.ijpharm.2013.06.048
204 Wang  J, Yu  Y, Yan  Z, Hu  Z, Li  L, Li  J, Jiang  X, Qian  Q. Anticancer activity of oncolytic adenoviruses carrying p53 is augmented by 11R in gallbladder cancer cell lines in vitro and in vivo. Oncology Reports, 2013, 30(2): 833–841
205 Tang  J, Fu  H, Kuang  Q, Zhang  L, Zhang  Q, Liu  Y, Ran  R, Gao  H, Zhang  Z, He  Q. Liposomes co-modified with cholesterol anchored cleavable PEG and octaarginines for tumor targeted drug delivery. Journal of Drug Targeting, 2014, 22(4): 313–326
https://doi.org/10.3109/1061186X.2013.875029
206 Shamay  Y, Shpirt  L, Ashkenasy  G, David  A. Complexation of cell-penetrating peptide-polymer conjugates with polyanions controls cells uptake of HPMA copolymers and anti-tumor activity. Pharmaceutical Research, 2014, 31(3): 768–779
https://doi.org/10.1007/s11095-013-1198-x
207 Wang  Y, Dou  L, He  H, Zhang  Y, Shen  Q. Multifunctional nanoparticles as nanocarrier for vincristine sulfate delivery to overcome tumor multidrug resistance. Molecular Pharmaceutics, 2014, 11(3): 885–894
https://doi.org/10.1021/mp400547u
208 Nakamura  T, Yamazaki  D, Yamauchi  J, Harashima  H. The nanoparticulation by octaarginine-modified liposome improves alpha-galactosylceramide-mediated antitumor therapy via systemic administration. Journal of Controlled Release, 2013, 171(2): 216–224
https://doi.org/10.1016/j.jconrel.2013.07.004
[1] Yang An, Chao Chen, Jundong Zhu, Pankaj Dwivedi, Yanjun Zhao, Zheng Wang. Hypoxia-induced activity loss of a photo-responsive microtubule inhibitor azobenzene combretastatin A4[J]. Front. Chem. Sci. Eng., 2020, 14(5): 880-888.
[2] Feng Qi, Jie Wu, Hao Li, Guanghui Ma. Recent research and development of PLGA/PLA microspheres/nanoparticles: A review in scientific and industrial aspects[J]. Front. Chem. Sci. Eng., 2019, 13(1): 14-27.
[3] Zhantong Wang, Haiyan Gao, Yang Zhang, Gang Liu, Gang Niu, Xiaoyuan Chen. Functional ferritin nanoparticles for biomedical applications[J]. Front. Chem. Sci. Eng., 2017, 11(4): 633-646.
[4] Quanyin Hu, Hunter N. Bomba, Zhen Gu. Engineering platelet-mimicking drug delivery vehicles[J]. Front. Chem. Sci. Eng., 2017, 11(4): 624-632.
[5] Pengwei Zhang, Junxiao Ye, Ergang Liu, Lu Sun, Jiacheng Zhang, Seung Jin Lee, Junbo Gong, Huining He, Victor C. Yang. Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer[J]. Front. Chem. Sci. Eng., 2017, 11(4): 529-536.
[6] Tzu-Lan CHANG, Honglei ZHAN, Danni LIANG, Jun F. LIANG. Nanocrystal technology for drug formulation and delivery[J]. Front. Chem. Sci. Eng., 2015, 9(1): 1-14.
[7] Juichen YANG,Hong CHEN,Yuan YUAN,Debanjan SARKAR,Jie ZHENG. Synthesis and characterization of biocompatible polyurethanes for controlled release of hydrophobic and hydrophilic drugs[J]. Front. Chem. Sci. Eng., 2014, 8(4): 498-510.
[8] Yeonhee YUN,Byung Kook LEE,Kinam PARK. Controlled drug delivery systems: the next 30 years[J]. Front. Chem. Sci. Eng., 2014, 8(3): 276-279.
[9] Yuwei WANG,David W. Grainger. Barriers to advancing nanotechnology to better improve and translate nanomedicines[J]. Front. Chem. Sci. Eng., 2014, 8(3): 265-275.
[10] Xiaoqing REN,Hongwei CHEN,Victor YANG,Duxin SUN. Iron oxide nanoparticle-based theranostics for cancer imaging and therapy[J]. Front. Chem. Sci. Eng., 2014, 8(3): 253-264.
[11] Michelle TRAN,Chun WANG. Semi-solid materials for controlled release drug formulation: current status and future prospects[J]. Front. Chem. Sci. Eng., 2014, 8(2): 225-232.
[12] Huining HE, Qiuling LIANG, Meong Cheol SHIN, Kyuri LEE, Junbo GONG, Junxiao YE, Quan LIU, Jingkang WANG, Victor YANG. Significance and strategies in developing delivery systems for bio-macromolecular drugs[J]. Front Chem Sci Eng, 2013, 7(4): 496-507.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed