Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (4) : 442-449    https://doi.org/10.1007/s11705-015-1547-x
RESEARCH ARTICLE
Investigation of the preparation methodologies of Pd-Cu single atom alloy catalysts for selective hydrogenation of acetylene
Xinxiang Cao,Arash Mirjalili,James Wheeler,Wentao Xie,Ben W.-L. Jang()
Department of Chemistry, Texas A&M University-Commerce, Commerce, TX 75429-3011, USA
 Download: PDF(913 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Galvanic replacement, co-impregnation and sequential impregnation have been employed to prepare Pd-Cu bimetallic catalysts with less than 1 wt-% Cu and ca. 0.03 wt-% Pd for selective hydrogenation of acetylene in excess ethylene. High angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) and H2 chemisorption results confirmed that Pd-Cu single-atom alloy structures were constructed in all three bimetallic catalysts. Catalytic tests indicated that when the conversion of acetylene was above 99%, the selectivity of ethylene of these three single atom alloy catalysts was still more than 73%. Furthermore, the single atom alloy catalyst prepared by sequential incipient wetness impregnation was found to have the best stability among the three procedures used.

Keywords H2 pulse chemisorption      palladium-copper bimetallic catalyst      single atom alloy      acetylene hydrogenation      HAADF-STEM     
Corresponding Author(s): Ben W.-L. Jang   
Online First Date: 20 November 2015    Issue Date: 26 November 2015
 Cite this article:   
Xinxiang Cao,Arash Mirjalili,James Wheeler, et al. Investigation of the preparation methodologies of Pd-Cu single atom alloy catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2015, 9(4): 442-449.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1547-x
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I4/442
Fig.1  Sketch of (a) the ultrasonic reaction system to perform Pd/Cu galvanic replacement [18] and (b) the scheme for the three catalyst preparation methods: sequential impregnation, co-impregnation and galvanic replacement (GR)
Samples Loading /wt-% Atomic ratio Hirr/Pda)
Cu Pd Cu : Pd
Cu0.85 0.86 0 Nb)
Pd0.03 0 0.0286 1.49
Cu0.85Pd0.03-seq 0.84 0.0299 47 : 1 N
Cu0.85Pd0.03-co 0.67 0.0269 42 : 1 N
CuPd-GR 0.85 0.0268 54 : 1 N
Tab.1  Actual metal loadings, Cu : Pd atomic ratios and H2 pulse chemisorption results of the resulted catalysts
Fig.2  H2-TPR patterns of the catalysts of Cu0.85, Cu0.85Pd0.03-seq, Cu0.85Pd0.03-co and Pd0.03
Fig.3  HAADF-STEM images of (a) CuPd-GR and (b) Cu0.85Pd0.03-seq
Fig.4  (a) Conversion, (b) selectivity and (c) yield as a function of temperature for acetylene selective hydrogenation over Pd/γ-Al2O3 and bimetallic Pd-Cu/γ-Al2O3 catalysts
Fig.5  (a) Ethylene selectivity and (b) acetylene conversion with time for the acetylene selective hydrogenation at 125 °C over bimetallic Pd-Cu/γ-Al2O3 catalysts prepared by different methods
Fig.6  TGA weight loss results of the used bimetallic Pd-Cu/γ-Al2O3 catalysts prepared by different methods
1 Li  Y N, Jang  W L B. Non-thermal RF plasma effects on surface properties of Pd/TiO2 catalysts for selective hydrogenation of acetylene. Applied Catalysis A, General, 2011, 392(1-2): 173–179
https://doi.org/10.1016/j.apcata.2010.11.008
2 McCue  A J, Shepherd  A M, Anderson  J A. Optimisation of preparation method for Pd doped Cu/Al2O3 catalysts for selective acetylene hydrogenation. Catalysis Science & Technology, 2015, 5(5): 2880–2890
https://doi.org/10.1039/C5CY00253B
3 Spanjers  C S, Sim  R S, Sturgis  N P, Kabius  B, Rioux  R M. In situ spectroscopic characterization of Ni1−xZnx/ZnO catalysts and their selectivity for acetylene semihydrogenation in excess ethylene. ACS Catalysis, 2015, 5(6): 3304–3315
https://doi.org/10.1021/acscatal.5b00627
4 Tierney  H L, Baber  A E, Sykes  E C H. Atomic-scale imaging and electronic structure determination of catalytic sites on Pd/Cu near surface alloys. Journal of Physical Chemistry C, 2009, 113(17): 7246–7250
https://doi.org/10.1021/jp809766d
5 Zhang  Y, Diao  W, Williams  C T, Monnier  J R. Selective hydrogenation of acetylene in excess ethylene using Ag- and Au-Pd/SiO2 bimetallic catalysts prepared by electroless deposition. Applied Catalysis A, General, 2014, 469: 419–426
https://doi.org/10.1016/j.apcata.2013.10.024
6 Chen  B, Dingerdissen  U, Krauter  J G E, Lansink R  H G J, Möbus  K, Ostgard  D J, Panster  P, Riermeier  T H, Seebald  S, Tacke  T, Trauthwein  H. New developments in hydrogenation catalysis particularlyin synthesis of fine and intermediate chemicals. Applied Catalysis A, General, 2005, 280(1): 17–46
https://doi.org/10.1016/j.apcata.2004.08.025
7 McCue  A J, McRitchie  C J, Shepherd  A M, Anderson  J A. Cu/Al2O3 catalysts modified with Pd for selective acetylene hydrogenation. Journal of Catalysis, 2014, 319: 127–135
https://doi.org/10.1016/j.jcat.2014.08.016
8 Menezes  W G, Altmann  L, Zielasek  V, Thiel  K, Bäumer  M. Evidence for geometric effects in neopentane conversion on PdAu catalysts. Journal of Catalysis, 2013, 300: 125–135
https://doi.org/10.1016/j.jcat.2012.12.023
9 Childers  D J, Schweitzer  N M, Shahri  S M K, Rioux  R M, Miller  J T, Meyer  R J. Evidence for geometric effects in neopentane conversion on PdAu catalysts. Catalysis Science & Technology, 2014, 4(12): 4366–4377
https://doi.org/10.1039/C4CY00846D
10 Tierney  H L, Baber  A E, Kitchin  J R, Sykes  E C H. Hydrogen dissociation and spillover on individual isolated palladium atoms. Physical Review Letters, 2009, 103(24): 2461021–2461024
https://doi.org/10.1103/PhysRevLett.103.246102
11 Tierney  H L, Baber  A E, Sykes  E C H. Dynamics of thioether molecular rotors: Effects of surface interactions and chain flexibility. Journal of Physical Chemistry C, 2009, 113(17): 7246–7250
https://doi.org/10.1021/jp809766d
12 Kyriakou  G, Boucher  M B, Jewell  A D, Lewis  E A, Lawton  T J, Baber  A E, Tierney  H L, Flytzani Stephanopoulos  M, Sykes  E C H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science, 2012, 335(6073): 1209–1212
https://doi.org/10.1126/science.1215864
13 Boucher  M B, Zugic  B, Cladaras  G, Kammert  J, Marcinkowski  M D, Lawton  T J, Sykes  E C H, Flytzani S  M. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Physical Chemistry Chemical Physics, 2013, 15(29): 12187–12196
https://doi.org/10.1039/c3cp51538a
14 Cao  X, Fu  Q, Luo  Y. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom- alloy catalyst. Physical Chemistry Chemical Physics, 2014, 16(18): 8367–8375
https://doi.org/10.1039/c4cp00399c
15 Cao  X, Ji  Y, Luo  Y. Dehydrogenation of propane to propylene by a Pd/Cu single-atom catalyst: Insight from first-principles calculations. Journal of Physical Chemistry C, 2015, 119(2): 1016–1023
https://doi.org/10.1021/jp508625b
16 Pei  G X, Liu  X Y, Wang  A, Li  L, Huang  Y, Zhang  T, Lee  J W, Jang  W L B, Mou  C. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New Journal of Chemistry, 2014, 38(5): 2043–2051
https://doi.org/10.1039/c3nj01136d
17 Pei  G X, Liu  X Y, Wang  A, Lee  A F, Isaacs  M A, Li  L, Pan  X, Yang  X, Wang  X, Tai  Z, Wilson  K, Zhang  T. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catalysis, 2015, 5(6): 3717–3725
https://doi.org/10.1021/acscatal.5b00700
18 Sun  Z, Masa  J, Xia  W, König  D, Ludwig  A, Li  Z A, Farle  M, Schuhmann  W, Muhler  M. Rapid and surfactant-free synthesis of bimetallic Pt-Cu nanoparticles simply via ultrasound-assisted redox replacement. ACS Catalysis, 2012, 2(8): 1647–1653
https://doi.org/10.1021/cs300187z
19 Batista  J, Pintar  A, Mandrino  D, Jenko  M, Martin  V. XPS and TPR examinations of γ-alumina supported Pd-Cu catalysts. Applied Catalysis A, General, 2001, 206(1): 113–124
https://doi.org/10.1016/S0926-860X(00)00589-5
20 Hackett  S F J, Brydson  R M, Gass  M H, Harvey  I, Newman  A D, Wilson  K, Lee  A F. High-activity, single site mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols. Angewandte Chemie, 2007, 119(45): 8747–8750
https://doi.org/10.1002/ange.200702534
21 Batista  J, Pintar  A, Gomilšek  J P, Kodre  A, Bornette  F. On the structural characteristics of γ-alumina-supported Pd-Cu bimetallic catalysts. Applied Catalysis A, General, 2001, 217(1-2): 55–68
https://doi.org/10.1016/S0926-860X(01)00580-4
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed