Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (1) : 139-146    https://doi.org/10.1007/s11705-015-1548-9
RESEARCH ARTICLE
Transition metal-doped heteropoly catalysts for the selective oxidation of methacrolein to methacrylic acid
Yanxia Zheng1,2,Heng Zhang2,3,Lei Wang2,Suojiang Zhang2,Shaojun Wang1,*()
1. School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
2. Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
3. School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
 Download: PDF(476 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Heteropoly compounds with the general formula Cs1M0.5x+H3?0.5xP1.2Mo11VO40 (M= Fe, Co, Ni, Cu or Zn) and Cs1CuyH3?2yP1.2Mo11VO40 (y = 0.1, 0.3 or 0.7) were synthesized and then used as catalysts for the selective oxidation of methacrolein to methacrylic acid. The effects of the transition metals on the structure and activity of the catalysts were investigated. FTIR spectra showed that the transition metal-doped catalysts maintained the Keggin structure of the undoped catalysts. X-ray diffraction results indicated that before calcination, the catalysts doped with Fe and Cu had cubic secondary structures, while the catalysts doped with Co, Ni or Zn had both triclinic and cubic phases and the Co-doped catalyst had the highest content of the triclinic form. Thermal treatment can decrease the content of the triclinic phase. NH3 temperature-programmed desorption and H2 temperature-programmed reduction results showed that the transition metals changed the acid and redox properties of the catalysts. The addition of Fe or Cu had positive effects on the activities of the catalyst which is due to the improvement of the electron transfer between the Fe or Cu and the Mo. The effects of the copper content on structure and catalytic activity were also investigated. The Cs1Cu0.3H2P1.2Mo11VO40 catalyst had the best performance for the selective oxidation of methacrolein to methacrylic acid.

Keywords heteropoly compounds      transition metals      selective oxidation      methacrolein     
Corresponding Author(s): Shaojun Wang   
Online First Date: 29 December 2015    Issue Date: 29 February 2016
 Cite this article:   
Yanxia Zheng,Heng Zhang,Lei Wang, et al. Transition metal-doped heteropoly catalysts for the selective oxidation of methacrolein to methacrylic acid[J]. Front. Chem. Sci. Eng., 2016, 10(1): 139-146.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1548-9
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I1/139
Fig.1  IR spectra of (a) CsPMoVO-Fe, (b) CsPMoVO-Co, (c) CsPMoVO-Ni, (d) CsPMoVO-Cu, (e) CsPMoVO-Zn
Fig.2  XRD patterns of (a) CsPMoVO-Fe, (b) CsPMoVO-Co, (c) CsPMoVO-Ni, (d) CsPMoVO-Cu, (e) CsPMoVO-Zn. (1) Before calcination and (2) after calcination
Fig.3  NH3-TPD profiles of the catalysts: (a) Cs1H3P1.2Mo11VO40, (b) CsPMoVO-Fe, (c) CsPMoVO-Co, (d) CsPMoVO-Ni, (e) CsPMoVO-Cu, (f) CsPMoVO-Zn
Catalyst Acidity /(mmol•g–1)
Cs1H3P1.2Mo11VO40 0.116
CsPMoVO-Fe 0.233
CsPMoVO-Co 0.392
CsPMoVO-Ni 0.272
CsPMoVO-Cu 0.191
CsPMoVO-Zn 0.118
Tab.1  Acidity of the samples obtained from NH3-pulse measurements
Fig.4  H2-TPR profiles of (a) Cs1H3P1.2Mo11VO40, (b) CsPMoVO-Fe, (c) CsPMoVO-Co, (d) CsPMoVO-Ni, (e) CsPMoVO-Cu, (f) CsPMoVO-Zn
Fig.5  Catalytic performance of the catalysts: (a) Cs1H3P1.2Mo11VO40, (b) CsPMoVO-Fe, (c) CsPMoVO-Co, (d) CsPMoVO-Ni, (e) CsPMoVO-Cu, (f) CsPMoVO-Zn
Fig.6  Scheme 1 The oxidation of MAL to MAA on HPCs
Fig.7  XRD patterns of Cs1CuyH3?2yP1.2Mo11VO40
Fig.8  NH3-TPD profiles of Cs1CuyH3?2yP1.2Mo11VO40
Cs1CuyH3?2yP1.2Mo11VO40 Acidity /(mmol·g–1)
y = 0.1 0.20
y = 0.3 0.18
y = 0.5 0.19
y = 0.7 0.10
Tab.2  Acidity of the samples obtained from NH3-pulse measurements
Fig.9  H2-TPR profiles of Cs1CuyH3?2yP1.2Mo11VO40
Cs1CuyH3?2yP1.2Mo11VO40 Conversion of MAL /% Selectivity /%
MAA Acetic acid
0.1 93.2 64.7 5.2
0.3 89.2 74.1 2.3
0.5 83.3 79.0 3.5
0.7 91.1 51.1 7.8
Tab.3  Catalytic performance of Cs1CuyH3?2yP1.2Mo11VO40
1 Langpape  M, Millet  J M M, Ozkan  U S, Delichere  P. Study of cesium or cesium-transition metal-substituted Keggin-type phosphomolybdic acid as isobutane oxidation catalysts. Journal of Catalysis, 1999, 182(1): 148–155
https://doi.org/10.1006/jcat.1998.2359
2 Black  J B, Claydon  N J, Gai  P L, Scott  J D, Serwicke  E M, Goodenough  J B. Acrolein oxidation over 12-molybdophosphates: I. Characterization of the catalyst. Journal of Catalysis, 1987, 106(1): 1–15
https://doi.org/10.1016/0021-9517(87)90205-3
3 Shishido  T, Inoue  A, Konishi  T, Matsuura  I, Takehira  K. Oxidation of isobutane over Mo-V-Sb mixed oxide catalyst. Chemistry Letters, 2000, 68: 215–221
4 Mizuno  N, Misono  M. Pore structure and surface-area of CsxH3‒xPMo12O40 (x = 0‒3, M= W, MO). Chemistry Letters, 1987, 16(5): 967–970
https://doi.org/10.1246/cl.1987.967
5 Kendell  S M, Brown  T C. Detailed product and kinetic analysis for the low-pressure selective oxidation of isobutane over phosphomolybdic acid. Reaction Kinetics, Mechanisms and Catalysis, 2010, 99(2): 251–268
6 Marosi  L, Cox  G, Tenten  A, Hibst  H. In situ X R D investigations of heteropolyacid catalysts in the methacrolein to methacrylic acid oxidation reaction: Structural changes during the activation/deactivation process. Journal of Catalysis, 2000, 194(1): 140–145
https://doi.org/10.1006/jcat.2000.2923
7 Kendell  S M, Brown  T C, Burns  R C. Accurate low-pressure kinetics for isobutane oxidation over phosphomolybdic acid and copper(II) phosphomolybdates. Catalysis Today, 2008, 131(1-4): 526–532
https://doi.org/10.1016/j.cattod.2007.10.027
8 Komaya  T, Misono  M. Activity patterns of H3PMO12O40 and its alkali salts for oxidation reactions. Chemistry Letters, 1983, 12(8): 1177–1180
https://doi.org/10.1246/cl.1983.1177
9 Konishi  Y, Sakata  K, Misono  M, Yoneda  Y. Catalysis by heteropoly compounds oxidation of methacrolein to methacrylic-acid over 12-molybdophosphoric acid. Journal of Catalysis, 1982, 77(1): 169–179
https://doi.org/10.1016/0021-9517(82)90157-9
10 Deuser  L M, Gaube  J W, Martin  F G, Hibst  H. Effects of Cs and V on heteropolyacid catalysts in methacrolein oxidation. Studies in Surface Science and Catalysis, 1996, 101: 981–990
https://doi.org/10.1016/S0167-2991(96)80309-0
11 Mizuno  N, Watanabe  T, Misono  M. Catalysis by heteropoly compounds oxidation of methacrylaldehyde over 12-molybdophosphoric acid and its alkali salts. Bulletin of the Chemical Society of Japan, 1991, 64(1): 243–247
https://doi.org/10.1246/bcsj.64.243
12 Li  Y, Wei  Z, Gao  F, Kovarik  L, Baylon  R A L, Peden  C H F, Wang  Y. Effect of oxygen defects on the catalytic performance of VOx/CeO2 catalysts for oxidative dehydrogenation of methanol. ACS Catalysis, 2015, 5(5): 3006–3012
https://doi.org/10.1021/cs502084g
13 Li  Y, Wei  Z, Gao  F, Kovarik  L, Peden  C H F, Wang  Y. Effects of CeO2 support facets on VOx/CeO2 catalysts in oxidative dehydrogenation of methanol. Journal of Catalysis, 2014, 315: 15–24
https://doi.org/10.1016/j.jcat.2014.04.013
14 Li  Y, Wei  Z, Gao  F, Kovarik  L, Peden  C H F, Wang  Y. Effect of sodium on the catalytic properties of VOx/CeO2 catalysts for oxidative dehydrogenation of methanol. Journal of Physical Chemistry C, 2013, 117(11): 5722–5729
https://doi.org/10.1021/jp310512m
15 Langpape  M, Millet  J M M. Effect of iron counter-ions on the redox properties of the Keggin-type molybdophosphoric heteropolyacid Part I. An experimental study on isobutane oxidation catalysts. Applied Catalysis A, 2000, 200(1-2): 89–101
https://doi.org/10.1016/S0926-860X(00)00637-2
16 Zhang  H, Yan  R Y, Yang  Y, Diao  Y Y, Wang  L, Zhang  S J. Investigation of Cu- and Fe-doped CsH3PMo11VO40 heteropoly compounds for the selective oxidation of methacrolein to methacrylic acid. Industrial & Engineering Chemistry Research, 2013, 52(12): 4484–4490
https://doi.org/10.1021/ie3032718
17 Mizun  N, Suh  D J, Han  W, Kudo  T. Catalytic performance of Cs2.5Fe0.08H1.26PVMo11O40 for direct oxidation of lower alkanes. Journal of Molecular Catalysis A, 1996, 114(1-3): 309–317
https://doi.org/10.1016/S1381-1169(96)00332-9
18 Yang  J I, Lee  D W, Lee  J H, Hyun  J C, Lee  K Y. Selective and high catalytic activity of CsnH4−nPMo11VO40 (n>3) for oxidation of ethanol. Applied Catalysis A, 2000, 195: 123–127
https://doi.org/10.1016/S0926-860X(99)00360-9
19 Kendell  S M, Alston  A S, Ballam  N J, Brown  T C, Burns  R C. Structural and activity investigation into Al3+, La3+ and Ce3+ addition to the phosphomolybdate heteropolyanion for isobutane selective oxidation. Catalysis Letters, 2011, 141(3): 374–390
https://doi.org/10.1007/s10562-010-0514-x
20 Bayer  R, Marchal  C, Liu  F X, Teze  A, Herve  G. Catalysis of the oxidation of isobutyric acid by vanadyl, copper and mixed vanadyl-copper salts of H3[PMo12O40] and H4. Journal of Molecular Catalysis A, 1996, 114(1-3): 277–286
https://doi.org/10.1016/S1381-1169(96)00327-5
21 Stytsenko  V D, Lee  W H, Lee  J W. Catalyst design for methacrolein oxidation to methacrylic acid. Reaction Kinetics and Catalysis Letters, 2001, 42(2): 212–216
https://doi.org/10.1023/A:1010413301105
22 Sun  M, Zhang  J Z, Cao  C J, Zhang  Q H, Wang  Y, Wan  H L. Significant effect of acidity on catalytic behaviors of Cs-substituted polyoxometalates for oxidative dehydrogenation of propane. Applied Catalysis A, 2008, 349(1-2): 212–221
https://doi.org/10.1016/j.apcata.2008.07.035
23 Villabrille  P, Romanelli  G, Vazquez  P, Cáceres  C. Vanadium-substituted Keggin heteropolycompounds as catalysts for ecofriendly liquid phase oxidation of 2,6-dimethylphenol to 2,6-dimethyl-1,4-benzoquinone. Applied Catalysis A, 2004, 270(1-2): 101–111
https://doi.org/10.1016/j.apcata.2004.04.028
24 Li  X K, Lei  Y, Jiang  Q, Zhao  J, Ji  W J, Zhang  Z B, Chen  Y. Partial oxidation of propane over Keggin type molybdovanadophosphoric acids. Acta Chimica Sinica, 2005, 63: 1049–1054
25 Ilkenhans  T, Herzog  B, Braun  T, Schlogl  R. The nature of the active phase in the heteropolyacid catalyst H4PVMo11O40·32H2O used for the selective oxidation of isobutyric acid. Journal of Catalysis, 1995, 153(2): 275–292
https://doi.org/10.1006/jcat.1995.1130
26 Marosi  L, Platero  E E, Cifre  J, Arean  C O. Thermal dehydration of H3<?A3B2 h=-0.3h?>+xPVxM12‒xO40·yH2O Keggin type heteropolyacids; formation, thermal stability and structure of the anhydrous acids H3PM12O40 of the corresponding anhydrides PM12O38.5 and of a novel trihydrate H3PW12O40·3H2O. Journal of Materials Chemistry, 2000, 10(8): 1949–1955
https://doi.org/10.1039/b001476l
27 Deng  Q, Jiang  S L, Cai  T J, Peng  Z S, Fang  Z J. Selective oxidation of isobutane over HxFe0.12Mo11VPAs0.3Oy heteropoly compound catalyst. Journal of Molecular Catalysis A, 2005, 229(1-2): 165–170
https://doi.org/10.1016/j.molcata.2004.11.013
28 Li  X K, Zhao  J, Ji  W J, Zhang  Z B, Chen  Y, Au  C T, Scott  H, Hartmut  H. Effect of vanadium substitution in the cesium salts of Keggin-type heteropolyacids on propane partial oxidation. Journal of Catalysis, 2006, 237(1): 58–66
https://doi.org/10.1016/j.jcat.2005.10.022
29 Damyanova  S, Spojakina  A, Jiratova  K. Effect of mixed titania-alumina supports on the phase composition of NiMo/TiO2 single bond Al2O3 catalysts. Applied Catalysis A, 1995, 125(2): 257–269
https://doi.org/10.1016/0926-860X(95)00006-2
30 Damyanova  S, Cubeiro  M L, Fierro  J L G. Acid-redox properties of titania-supported 12-molybdophosphates for methanol oxidation. Journal of Molecular Catalysis A, 1999, 142(1): 85–100
https://doi.org/10.1016/S1381-1169(98)00279-9
31 Misono  M, Nojiri  N. Recent Progress in Catalytic Technology in Japan. Applied Catalysis A, 1990, 64: 1–30
https://doi.org/10.1016/S0166-9834(00)81550-X
32 Huynh  Q, Millet  J M M. Characterization of iron counter-ion environment in bulk and supported phosphomolybdic acid based catalysts. Journal of Physics and Chemistry of Solids, 2005, 66(5): 887–894
https://doi.org/10.1016/j.jpcs.2004.12.001
33 Mizuno  N, Tateishi  M, Iwamoto  M. Direct oxidation of isobutane into methacrylic acid and methacrolein over Cs2.5Ni0.08-substitute H3PMoI2O40. Chemical Communications, 1994, 12: 1411–1412
https://doi.org/10.1039/c39940001411
34 Mizuno  N, Yahiro  H. Oxidation of isobutane catalyzed by partially salified cesium molybdovanadophosphoric acids. Journal of Physical Chemistry B, 1998, 102(2): 437–443
https://doi.org/10.1021/jp972677n
35 Putluru  S S R, Mossin  S, Riisager  A, Fehrmann  R. Heteropoly acid promoted Cu and Fe catalysts for the selective catalytic reduction of NO with ammonia. Catalysis Today, 2011, 176(1): 292–297
https://doi.org/10.1016/j.cattod.2010.11.087
36 Kanno  M, Yasukawa  T, Ninomiya  W, Ooyachi  K, Kamiya  Y. Catalytic oxidation of methacrolein to methacrylic acid over silica-supported 11-molybdo-1-vanadophosphoric acid with different heteropolyacid loadings. Journal of Catalysis, 2010, 273(1): 1–8
https://doi.org/10.1016/j.jcat.2010.04.014
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed