Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (1) : 99-102    https://doi.org/10.1007/s11705-016-1554-6
COMMUNICATION
Cystine oligomers successfully attached to peptide cysteine-rich fibrils
Christian Bortolini,Mingdong Dong()
Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark
 Download: PDF(419 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Amyloid peptides are renowned to be related to neurodegenerative diseases, however, a fruitful avenue is to employ them as high-performance nanomaterials. These materials benefit from the intrinsic outstanding mechanical robustness of the amyloid backbone made of b-strands. In this work, we exploited amyloid-like fibrils as functional material to attach pristine L-cysteine aggregates (cystine oligomers) and gold nanoparticles, without the need of templating compounds. This work will open new avenues on functional materials design and their realisation.

Keywords cysteine      peptide fibrils      gold nanoparticles      amyloids      oligomers      nanomaterials     
Corresponding Author(s): Mingdong Dong   
Online First Date: 25 January 2016    Issue Date: 29 February 2016
 Cite this article:   
Christian Bortolini,Mingdong Dong. Cystine oligomers successfully attached to peptide cysteine-rich fibrils[J]. Front. Chem. Sci. Eng., 2016, 10(1): 99-102.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1554-6
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I1/99
Fig.1  Schematic of the monomer and compounds employed in this work. (a) Molecular representation of the peptide monomer NH2-CSSFAFASSC-NH2; the functional amino acid, i.e., cysteine, is highlighted in red; (b) Suggested scenario where pristine L-cysteines in solution bind each other forming cystine aggregates
Fig.2  Negative stained TEM images showing (a) amyloid-like twisted CSFAC fibrils, (b) pristine L-cysteine aggregates (cystine oligomers), and (c) CSFAC fibrils decorated with cystine oligomers
Fig.3  Negative stained TEM images presenting (a) cystine oligomers+ Au NPs, (b) detailed image showing Au NPs binding the cystine oligomers, and (c) CSFAC fibrils decorated with cystine oligomers and Au NPs
1 Bortolini  C, Liu  L, Gronewold  T M A, Wang  C, Besenbacher  F, Dong  M D. The position of hydrophobic residues tunes peptide self-assembly. Soft Matter, 2014, 10(31): 5656–5661
https://doi.org/10.1039/C4SM01065E
2 Paramonov  S E, Jun  H W, Hartgerink  J D. Self-assembly of peptide-amphiphile nanofibers: The roles of hydrogen bonding and amphiphilic packing. Journal of the American Chemical Society, 2006, 128(22): 7291–7298
https://doi.org/10.1021/ja060573x
3 Liu  L, Busuttil  K, Zhang  S, Yang  Y L, Wang  C, Besenbacher  F, Dong  M D. The role of self-assembling polypeptides in building nanomaterials. Physical Chemistry Chemical Physics, 2011, 13(39): 17435–17444
https://doi.org/10.1039/c1cp21338e
4 Huang  J F, Sun  I W. Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-cysteine monolayers. Advanced Functional Materials, 2005, 15(6): 989–994
https://doi.org/10.1002/adfm.200400382
5 Bortolini  C, Liu  L, Li  Z S, Thomsen  K, Wang  C, Besenbacher  F, Dong  M D. Identification of cysteine-rich peptide-fiber by specific cysteine-Au nanoparticles binding on fiber surface. Advanced Materials Interfaces, 2014, 9: 1400133
https://doi.org/10.1002/admi.201400133
6 Djalali  R, Chen  Y, Matsui  H. Au nanowire fabrication from sequenced histidine-rich peptide. Journal of the American Chemical Society, 2002, 124(46): 13660–13661
https://doi.org/10.1021/ja028261r
7 Banerjee  I A, Yu  L T, Matsui  H. Cu nanocrystal growth onpeptide nanotubes by biomineralization: Size control of cunanocrystals by tuning peptide conformation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(25): 14678–14682
https://doi.org/10.1073/pnas.2433456100
8 Kasotakis  E, Mossou  E, Adler-Abramovich  L, Mitchell  E P, Forsyth  V T, Gazit  E, Mitraki  A. Design of metal-binding sites onto self-assembled peptide fibrils. Biopolymers, 2009, 92(3): 164–172
https://doi.org/10.1002/bip.21163
9 Lindgren  M, Hallbrink  M, Prochiantz  A, Langel  U. Cell-penetrating peptides. Trends in Pharmacological Sciences, 2000, 21(3): 99–103
https://doi.org/10.1016/S0165-6147(00)01447-4
10 Richard  J P, Melikov  K, Vives  E, Ramos  C, Verbeure  B, Gait  M J, Chernomordik  L V, Lebleu  B. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. Journal of Biological Chemistry, 2002, 2  78(1): 585–590
https://doi.org/10.1074/jbc.M209548200
11 Walker  L C, Jucker  M. Amyloid by default. Nature Neuroscience, 2011, 14(6): 669–670
https://doi.org/10.1038/nn.2853
12 Dobson  C M. Protein folding and misfolding. Nature, 2003, 426(6968): 884–890
https://doi.org/10.1038/nature02261
13 Knowles  T P J, Buehler  M J. Nanomechanics of functional and pathological amyloid materials. Nature Nanotechnology, 2011, 6(8): 469–479
https://doi.org/10.1038/nnano.2011.102
14 Shorter  J, Lindquist  S. Prions as adaptive conduits of memory and inheritance. Nature Reviews. Genetics, 2005, 6(6): 435–450
https://doi.org/10.1038/nrg1616
15 Hauser  C A E, Maurer-Stroh  S, Martins  I C. Amyloid-based nanosensors and nanodevices. Chemical Society Reviews, 2014, 43(15): 5326–5345
https://doi.org/10.1039/C4CS00082J
16 Knowles  T P, Fitzpatrick  A W, Meehan  S, Mott  H R, Vendruscolo  M, Dobson  C M, Welland  M E. Role of intermolecular forces in defining material properties of protein nanofibrils. Science, 2007, 318(5858): 1900–1903
https://doi.org/10.1126/science.1150057
17 Luhrs  T, Ritter  C, Adrian  M, Riek-Loher  D, Bohrmann  B, Doeli  H, Schubert  D, Riek  R. 3D structure of Alzheimer’s amyloid-β(1-42) fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(48): 17342–17347
https://doi.org/10.1073/pnas.0506723102
18 Bortolini  C, Jones  N C, Hoffmann  S V, Wang  C, Besenbacher  F, Dong  M D. Mechanical properties of amyloid-like fibrils defined by secondary structures. Nanoscale, 2015, 7(17): 7745–7752
https://doi.org/10.1039/C4NR05109B
19 Scheibel  T, Parthasarathy  R, Sawicki  G, Lin  X M, Jaeger  H, Lindquist  S L. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(8): 4527–4532
https://doi.org/10.1073/pnas.0431081100
20 Miles  A J, Janes  R W, Brown  A, Clarke  D T, Sutherland  J C, Tao  Y, Wallace  B A, Hoffmann  S V. Light flux density threshold at which protein denaturation isinduced by synchrotron radiation circular dichroismbeamlines. Journal of Synchrotron Radiation, 2008, 15(4): 420–422
https://doi.org/10.1107/S0909049508009606
21 Miles  A J, Hoffmann  S V, Tao  Y, Janes  R W, Wallace  B A. Synchrotron radiation circular dichroism (SRCD) spectroscopy: New beamlines and new applications in biology. Spectroscopy-an International Journal, 2007, 21(5-6): 245–255
https://doi.org/10.1155/2007/282713
22 Whitmore  L, Wallace  B A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research, 2004, 32: 668–673
https://doi.org/10.1093/nar/gkh371
23 Whitmore  L, Wallace  B A. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers, 2008, 89(5): 392–400
https://doi.org/10.1002/bip.20853
[1] FCE-15043-of-BC_suppl_1 Download
[1] Njud S. Alharbi, Baowei Hu, Tasawar Hayat, Samar Omar Rabah, Ahmed Alsaedi, Li Zhuang, Xiangke Wang. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1124-1135.
[2] Sona Jain, Zhicheng Huang, Brent R. Dixon, Syed Sattar, Juewen Liu. Cryptosporidium parvum oocyst directed assembly of gold nanoparticles and graphene oxide[J]. Front. Chem. Sci. Eng., 2019, 13(3): 608-615.
[3] Aswathy Vasudevan, Vasyl Shvalya, Aleksander Zidanšek, Uroš Cvelbar. Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: A mini review[J]. Front. Chem. Sci. Eng., 2019, 13(3): 427-443.
[4] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[5] You Han, Dandan Jiang, Jinli Zhang, Wei Li, Zhongxue Gan, Junjie Gu. Development, applications and challenges of ReaxFF reactive force field in molecular simulations[J]. Front. Chem. Sci. Eng., 2016, 10(1): 16-38.
[6] Wenchao Zhang,Lin Zhang,Yan Sun. Size-controlled green synthesis of silver nanoparticles assisted by L-cysteine[J]. Front. Chem. Sci. Eng., 2015, 9(4): 494-500.
[7] WANG Jixiao, LIU Rui, ZHANG Xiaoyan, ZHOU Zhibin, WANG Zhi, WANG Shichang. Preparation and sedimentation behavior of conductive polymeric nanoparticles[J]. Front. Chem. Sci. Eng., 2008, 2(3): 231-235.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed