Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (1) : 162-175    https://doi.org/10.1007/s11705-016-1555-5
RESEARCH ARTICLE
Modeling the methyldiethanolamine-piperazine scrubbing system for CO2 removal: Thermodynamic analysis
Stefania Moioli(),Laura A. Pellegrini
Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
 Download: PDF(975 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Aqueous solutions of methyldiethanolamine (MDEA) and piperazine (PZ) are commonly used solvent nowadays. In this work a thermodynamic analysis with the Electrolyte-NRTL model has been performed for systems composed of acidic gases and MDEA+PZ aqueous solution. ASPEN Plus® has been used for thermodynamic modeling. Values of binary interaction parameters for liquid phase activity coefficients have been estimated from regressions of experimental data. Moreover, the influence of the interactions between ion pairs and MDEA or PZ molecular species has been analyzed. The final aim is to obtain a reliable tool for design and simulation of absorption and stripping columns, fundamentals also in order to carry out energy saving studies.

Keywords vapor-liquid equilibrium      methyldietanolamine      piperazine      regression      Electrolyte-NRTL     
Corresponding Author(s): Stefania Moioli   
Online First Date: 01 February 2016    Issue Date: 29 February 2016
 Cite this article:   
Stefania Moioli,Laura A. Pellegrini. Modeling the methyldiethanolamine-piperazine scrubbing system for CO2 removal: Thermodynamic analysis[J]. Front. Chem. Sci. Eng., 2016, 10(1): 162-175.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1555-5
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I1/162
Reaction# Expression Source θ1,j θ2,j θ3,j
(1) 2H2O?KeqH2OH3O+1+OH-1 Edwards et al. [27] 132.899 –13445.9 –22.4773
(2) CO2+2H2O?KeqHCO3-1HCO3-1+H3O+1 Edwards et al. [27] 231.465 –12092.1 –36.7816
(3) HCO3-1+H2O?KeqCO3-2CO3-2+H3O+1 Edwards et al. [27] 216.049 –12431.7 –35.4819
(4) PZH+1+H2O?KeqPZH+1PZ+H3O+1 Moioli and Pellegrini [28] –9.416 –5008.4 0
(5) PZ+CO2+H2O?KeqPZCO2-1PZCO2-1+H3O+1 Bishnoi and Rochelle [15] –29.310 5615 0
(6) HPZCO2+H2O?KeqHPZCO2PZCO2-1+H3O+1 ASPEN Plus® [29] –14.042 –3443.1 0
(7) PZCO2-1+HCO3-1?KeqPZ(CO2-1)2PZ(CO2-1)2+H2O ASPEN Plus® [29] 0.3615 1322.3 0
(8) MDEAH+1+H2O?KeqMDEAH+1MDEA+H3O+1 ASPEN Plus® [29] –9.4165 –4234.98 0
Tab.1  Parameters θ1,j, θ2,j and θ3,j (θ4,j = 0) for the chemical equilibrium constant of the considered reactions
Source a b c d
Bishnoi and Rochelle [15] 170.71 –8477.7 –21.95 0.005781
Haghtalab et al. [31] 170.7126 –8477.7 –21.957 0.005781
Dash et al. [33] 163.8 –8477.7 –21.957 0.005781
Chen [34] 91.344 –5876 –8.598 –0.012
Austgen et al. [30] 170.7126 –8477.71 –21.9574 0.005781
Posey [35] 110.0345 –6789.04 –11.4519 –0.01045
Tab.2  Values of parameters of Henry’s constants of carbon dioxide in water according to the literature
Source Temperature/K CO2 partial pressure/kPa
Najibi and Maleki [18] 303?423 26.3?204.3
Derks et al. [19] 298?323 0.25?110
Vahidi et al. [20] 313.15?343 13.39?4783.14
Bishnoi and Rochelle [15] 313?343 0.033?7.480
Liu et al. [14] 303?363 13.16?935.9
Xu et al. [13] 377 3.8346?76.770
Bottger et al. [16] 313?393 218?11880
Ali and Aroua [21] 313?353 0.06?95.78
Kamps et al. [22] 353 180.7?6400
Tab.3  Experimental data available and used for calculation
Interaction A B
H2O-(MDEAH+1,HCO3-1) –30.4417 9794.26
(MDEAH+1,HCO3-1)-H2O –26.6577 10734.00
H2O-(PZH+1,HCO3-1) –98.3122 31451.64
(PZH+1,HCO3-1)-H2O 7.7277 –3736.78
H2O-(MDEAH+1,PZ(CO2-1)2) 112.068 ?45038.54
(MDEAH+1,PZ(CO2-1)2)-H2O 3.2729 –2152.44
Tab.4  Values of A and B resulting from the regression not including parameters related to interactions with MDEA and PZ molecular species
Interaction A B
H2O-(MDEAH+1,HCO3-1) –37.2354 11939.38
(MDEAH+1,HCO3-1)-H2O –14.4808 5721.59
H2O-(PZH+1,HCO3-1) –131.3298 41289.47
(PZH+1,HCO3-1)-H2O 10.7776 –5135.15
H2O-(MDEAH+1,PZ(CO2-1)2) 106.9975 –42206.22
(MDEAH+1,PZ(CO2-1)2)-H2O –2.2525 –402.2591
MDEA-(MDEAH+1,HCO3-1) 0.005327 –387.4193
(MDEAH+1,HCO3-1)-MDEA –3.4882 1469.30
PZ-(PZH+1,HCO3-1) 12.6981 4912.62
(PZH+1,HCO3-1)-PZ 43.5103 –17031.88
Tab.5  Values of A and B resulting from the regression considering also parameters related to interactions with MDEA and PZ molecular species
Fig.1  Parity plot of mole fraction of carbon dioxide (a) in the liquid phase and (b) in the vapor phase: Comparison between the results obtained with the regression of parameters not including those related to interactions with MDEA and PZ molecular species and the experimental point
Fig.2  Parity plot of mole fraction of MDEA and PZ in the liquid phase: Comparison between the results obtained with the regression of parameters not including those related to interactions with MDEA and PZ molecular species and the experimental point
Fig.3  Parity plot of mole fraction of carbon dioxide (a) in the liquid phase and (b) in the vapor phase: Comparison between the results obtained with the regression of parameters including those related to interactions with MDEA and PZ molecular species and the experimental point
Fig.4  Parity plot of mole fraction of MDEA and PZ in the liquid phase: Comparison between the results obtained with the regression of parameters including those related to interactions with MDEA and PZ molecular species and the experimental point
Fig.5  Parity plot of mole fraction of carbon dioxide (a) in the vapor phase and (b) in the liquid phase: Comparison between the results obtained with the regression of parameters and ASPEN Plus® and the experimental points [18]
Fig.6  Partial pressure of CO2 vs. CO2 loading at 303 K. Comparison between the obtained results and experimental points [14,18]
Fig.7  Partial pressure of CO2 vs. CO2 loading at 328 K. Comparison between the obtained results and experimental points [20]
Fig.8  Partial pressure of CO2 vs. CO2 loading at 343 K. Comparison between the obtained results and experimental points from (a) Liu et al. [14], (b) Najibi and Maleki [18] and (c) Vahidi et al. [20]
Fig.9  Partial pressure of CO2 vs. CO2 loading at 383 K. Comparison between the obtained results and experimental points [18]
Fig.10  Partial pressure of CO2 vs. CO2 loading at 393 K. Comparison between the obtained results and experimental points [16]
Fig.11  Partial pressure of CO2 vs. CO2 loading at 403 K. Comparison between the obtained results and experimental points [18]
Vapor mole fraction CO2Liquid mole fraction CO2
Proposed parametersASPEN Plus®Proposed parametersASPEN Plus®
(ris-exp)% ass (ris-exp)/ris(ris-exp)% ass (ris-exp)/ris(ris-exp)% ass (ris-exp)/ris(ris-exp)% ass (ris-exp)/ris
–0.00208.07890.003815.0754–0.00020.01820.00200.2321
–0.00082.51890.003210.5015–0.00060.05940.00030.0339
0.00030.72520.00205.6523–0.00090.0886–0.00050.0533
–0.00126.44960.00147.69320.00020.02390.00340.4803
–0.00208.60020.00104.2921–0.00060.06800.00200.2385
–0.00124.14360.00144.7738–0.00140.1467–0.00040.0380
–0.00010.20100.00195.9369–0.00170.1794–0.00100.1073
–0.00135.10970.004015.9160–0.00020.01880.00170.1898
0.00030.80980.00267.7570–0.00080.0834–0.00050.0465
0.00041.25850.00247.0927–0.00090.0873–0.00060.0570
–0.002210.85270.00062.85310.00020.03280.00310.4367
–0.00238.23450.00103.7259–0.00110.12030.00010.0149
–0.00227.57170.00113.6511–0.00120.1332–0.00010.0116
0.00101.50920.009715.2933–0.00070.07760.00380.3976
0.00405.57970.009813.7841–0.00060.05930.00150.1474
0.007710.49560.011014.8844–0.00050.05340.00080.0793
–0.00366.80340.00224.21350.00060.06230.00780.8750
–0.00071.23270.00589.5927–0.00020.02400.00410.4306
0.00273.94970.008312.1693–0.00050.04940.00190.1927
–0.003511.0506–0.00268.37450.239950.56140.246751.9903
0.00091.98310.00092.0314–0.00030.03060.00500.5806
0.00061.03450.00142.4835–0.00050.05580.00310.3375
–0.00101.5898–0.00030.3984–0.00080.08620.00190.1974
0.00168.4183–0.002814.3798–0.00050.13960.00711.9266
0.019277.36410.008333.5482–0.309738.0155–0.308937.9261
0.00163.9922–0.00399.5916–0.00200.24100.00180.2203
0.00010.1395–0.005311.0206–0.00200.22010.00090.1026
0.00091.44820.008913.6488–0.00020.02200.00350.3622
0.00395.59530.010014.3654–0.00040.04480.00150.1561
0.00617.97680.008611.1324–0.00040.04370.00050.0518
–0.00478.27940.00203.50500.00020.01710.00620.7019
–0.00182.91500.00568.8589–0.00020.01710.00350.3733
0.00050.68020.007210.3951–0.00040.04320.00170.1780
–0.00133.4126–0.00051.35480.00030.03650.00761.0516
–0.00316.0429–0.00050.9106–0.00040.04410.00430.5020
0.00121.69730.00425.8611–0.00130.13170.00040.0413
–0.002310.3251–0.003415.18380.105041.91650.111944.6877
–0.00082.9862–0.00269.97670.00200.53540.01032.8096
–0.00297.2471–0.004912.4028–0.00340.47460.00130.1736
–0.00529.8672–0.006412.0837–0.00230.26710.00080.0887
0.013717.47430.00050.60120.00390.43000.01571.7417
0.00746.3467–0.00574.8814–0.00030.02640.00530.5449
0.01078.5157–0.00251.9971–0.00050.04750.00370.3749
0.014010.44500.00010.0396–0.00060.06280.00260.2592
0.007214.1907–0.005310.45040.01331.77760.02182.9216
0.00232.9412–0.011514.78240.00290.32700.00800.8972
0.00151.4447–0.014214.03010.00170.18050.00500.5286
0.00534.7121–0.012010.73040.00100.10100.00360.3728
0.00535.40410.00272.71570.00510.56500.01351.5049
0.00746.25000.00524.41580.00030.03410.00480.4929
0.01239.23190.00906.7392–0.00030.02860.00220.2216
–0.00817.7328–0.00938.88880.00200.21920.00640.7087
–0.00705.8525–0.00867.14890.00100.10190.00380.4026
–0.00362.8616–0.00594.72170.00050.05350.00290.3006
Tab.1  Table A1 Comparison between results obtained with ASPEN Plus® default and the proposed parameters against experimental data[14]
Proposed parametersASPEN Plus®Proposed parametersASPEN Plus®
Vapor mole fraction CO2Liquid mole fraction CO2
(ris-exp)% ass (ris-exp)/ris(ris-exp)% ass (ris-exp)/ris(ris-exp)% ass (ris-exp)/ris(ris-exp)% ass (ris-exp)/ris
–0.00151.47060.00636.06360.005328.96730.004122.5877
–0.002261.7896960.007485.9312380.00662935.371930.00479625.59125
–0.001460.586780.0159656.4068650.00678625.830960.0025929.867229
–0.001990.657590.0176025.8262610.00781428.056920.00314811.30485
–0.000460.1127990.0220665.3630510.00674719.86170.0017425.128069
–0.003460.7570810.019764.3279950.00642917.608990.001263.452281
–0.001480.2792230.0221824.1946410.00514412.505380.0002690.654262
–0.002340.4325860.0213443.9505770.00557113.499530.0007111.722091
–0.003020.5030710.0203973.3959090.00505511.262930.0004811.071567
–0.002440.4193970.0211173.6342790.0037918.396247–0.00092.001342
–0.002630.3931230.0197942.9591420.00651613.798540.0025025.299101
–0.002540.3781950.0198112.9464510.0051210.476270.0011152.281907
–0.002440.3040010.0157741.9662940.0031775.2376720.0005650.9312
–0.002030.235580.0129891.5066670.0004350.619652–0.001211.72659
–0.002030.2351850.0129931.507119–0.000340.47992–0.001992.808503
–0.001540.1704360.010571.169939–0.002022.55425–0.002743.458777
–0.001480.1629180.01041.147401–0.002743.397227–0.003384.193865
–0.001360.1473130.0088060.950564–0.003814.422973–0.003874.500622
–0.001330.1437890.0087180.939723–0.004865.563112–0.004895.594112
–0.001240.1330920.0081110.867486–0.003674.166695–0.003453.908687
–0.000190.1620150.0057794.9094730.001668.6018330.00373319.33975
–0.001290.6431460.009464.7131630.0019398.3259980.00337914.50684
–0.002260.7207780.0126424.0258680.0017016.1022470.00298610.71338
–0.002680.6612540.0140543.4639610.0006712.1045140.0022837.160177
–0.003040.5840920.0144322.769516–0.00030.8177320.0021545.920382
–0.003310.5726150.0139672.417564–0.001624.1035770.0013613.443636
–0.002490.3895150.0140832.200088–0.002385.6221080.0013273.129761
–0.003050.4398960.0126191.819639–0.004219.0894170.0001660.35771
–0.003420.4696420.0114921.579854–0.004839.9907774.1E-060.008479
–0.003726.438404–0.002524.3595040.00303524.86830.00539444.1891
–0.002623.0320920.0009311.0774830.00248616.730720.00462431.12712
–0.00412.685730.0027971.8328330.00280815.473020.00450824.83816
–0.002651.1859460.0064932.909170.0015376.933730.00294813.2986
–0.001530.5159940.0090443.0501680.0018397.5950150.00314913.00781
–0.000620.1610020.0109582.836516–0.000431.456720.0009533.2567
–0.002280.5304340.0095742.227339–0.000290.9380180.0011923.912237
–0.001110.1734840.0102271.599164–0.002155.5044060.0007872.013327
–0.000860.1155010.0090071.205643–0.003327.3877430.0009312.073131
–0.000350.0437580.0082931.030349–0.0051110.220562.96E-050.059195
–0.000310.036720.0072820.862287–0.0059811.1188–0.000160.291827
–0.000420.0485820.0066360.769664–0.0066911.94854–0.000550.989747
–0.000250.028520.0060890.689431–0.0068211.70332–0.000290.490448
–0.000510.0571820.0054160.605191–0.007312.15212–0.000560.926738
–0.0234630.65427–0.002753.5959080.00457621.160280.00529424.48252
–0.024149.555508–0.000420.167416–0.0074627.204030.00528219.27387
–0.002120.625530.0007590.2236940.0010113.5040370.0050817.60161
–0.00220.313044–0.000950.1345310.0001250.3634370.0032149.367759
–0.000660.0882360.0004010.0534994.28E-050.1219690.0027887.943963
–0.001640.210948–0.000690.088279–0.000120.3389490.0024046.717504
–0.000740.082297–0.000270.030307–3.3E-050.0865510.001263.285539
–0.000610.067832–0.000180.0197015.65E-050.1468250.0012553.260553
–0.000470.049619–0.000210.0219370.0001110.277450.0007521.886707
–0.000450.046404–0.000260.0272377.13E-050.1749470.0004421.084279
–0.000450.047193–0.000270.027789–3.8E-050.0930550.0003430.840921
–0.000320.033049–0.000170.017441–7.1E-060.0171990.0002460.595665
–0.00030.031224–0.000160.016624–0.00010.2494920.0001140.275501
–0.001452.419592–0.000380.6270610.0008644.2368520.00322615.82003
–0.002251.3718580.0010870.6625750.0012034.9604430.00469319.35588
0.0015280.4387970.0045971.3196946.22E-050.2203020.00456816.17872
–0.001550.2896170.0004690.08767–0.000852.6950010.00384912.14486
0.0006110.1076360.0024080.424184–0.000892.7808360.00375211.70184
–0.000740.1282710.0010010.172645–0.001063.2709370.00357711.02385
–2.6E-050.0035370.0008810.11888–0.001494.2151290.0026037.378248
–0.000140.0162760.0003640.043316–0.001443.8666220.0019875.330923
–0.000410.0482926.82E-050.008057–0.001483.9511310.0018945.05095
–0.000310.03474–4.5E-060.000503–0.001383.5527460.0015023.878587
–0.000380.042281–1E-040.011097–0.001383.5342380.0014083.612999
–0.000410.044691–0.000190.020664–0.001333.3632590.0011993.027892
–0.00040.043559–0.000180.019872–0.001383.4699140.0011422.877188
–0.000230.025072–5.5E-050.005903–0.001323.2916410.0009972.483369
–0.000730.078455–0.000560.059762–0.001323.2908560.0009692.409399
Tab.2  Table A2 Comparison between results obtained with ASPEN Plus® default and the proposed parameters against experimental data [19]
1 Kohl A L, Nielsen R. Gas Purification, 5th ed. Texas, USA: Gulf Publishing Company, Book Division, 1997
2 Nagy T, Mizsey P. Model verification and analysis of the CO2-MEA absorber-desorber system. International Journal of Greenhouse Gas Control, 2015, 39: 236–244
https://doi.org/10.1016/j.ijggc.2015.05.017
3 Nagy T, Mizsey P. Effect of fossil fuels on the parameters of CO2 capture. Environmental Science & Technology, 2013, 47(15): 8948–8954
4 Svendsen H F, Hessen E T, Mejdell T. Carbon dioxide capture by absorption, challenges and possibilities. Chemical Engineering Journal, 2011, 171(3): 718–724
https://doi.org/10.1016/j.cej.2011.01.014
5 Duke M C, Ladewig B, Smart S, Rudolph V, Diniz da Costa J C. Assessment of postcombustion carbon capture technologies for power generation. Frontiers of Chemical Engineering in China, 2010, 4(2): 184–195
https://doi.org/10.1007/s11705-009-0234-1
6 Ravanchi M, Sahebdelfar S, Zangeneh F. Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas emissions. Frontiers of Chemical Science and Engineering, 2011, 5(2): 173–178
https://doi.org/10.1007/s11705-010-0562-1
7 Mumford K A, Wu Y, Smith K H, Stevens G W. Review of solvent based carbon-dioxide capture technologies. Frontiers of Chemical Science and Engineering, 2015, 9(2): 125–141
https://doi.org/10.1007/s11705-015-1514-6
8 Zhang Y, Fan L, Zhang L, Chen H. Research progress in removal of trace carbon dioxide from closed spaces. Frontiers of Chemical Engineering in China, 2007, 1(3): 310–316
https://doi.org/10.1007/s11705-007-0057-x
9 Moioli S, Pellegrini L A, Picutti B, Vergani P. Improved rate-based modeling of H2S and CO2 removal by Methyldiethanolamine scrubbing. Industrial & Engineering Chemistry Research, 2013, 52(5): 2056–2065
https://doi.org/10.1021/ie301967t
10 Rochelle G, Chen E, Freeman S, Van Wagener D, Xu Q, Voice A. Aqueous piperazine as the new standard for CO2 capture technology. Chemical Engineering Journal, 2011, 171(3): 725–733
https://doi.org/10.1016/j.cej.2011.02.011
11 Moioli S, Pellegrini L A. Physical properties of PZ solution used as a solvent for CO2 removal. Chemical Engineering Research & Design, 2015, 93: 720–726
https://doi.org/10.1016/j.cherd.2014.06.016
12 Langé S, Moioli S, Pellegrini L A. Vapor-liquid equilibrium and enthalpy of absorption of the CO2-MEA-H2O system. Chemical Engineering Transactions, 2015, 43: 1975–1980
13 Xu G W, Zhang C F, Qin S J, Gao W H, Liu H B. Gas-liquid equilibrium in a CO2-MDEA-H2O system and the effect of piperazine on it. Industrial & Engineering Chemistry Research, 1998, 37(4): 1473–1477
https://doi.org/10.1021/ie9506328
14 Liu H B, Zhang C F, Xu G W. A study on equilibrium solubility for carbon dioxide in methyldiethanolamine-piperazine-water solution. Industrial & Engineering Chemistry Research, 1999, 38(10): 4032–4036
https://doi.org/10.1021/ie990113v
15 Bishnoi S, Rochelle G T. Thermodynamics of piperazine/methyldiethanolamine/water/carbon dioxide. Industrial & Engineering Chemistry Research, 2002, 41(3): 604–612
https://doi.org/10.1021/ie0103106
16 Böttger A, Ermatchkov V, Maurer G. Solubility of carbon dioxide in aqueous solutions of N-methyldiethanolamine and piperazine in the high gas loading region. Journal of Chemical & Engineering Data, 2009, 54(6): 1905–1909
https://doi.org/10.1021/je900083k
17 Speyer D, Ermatchkov V, Maurer G. Solubility of carbon dioxide in aqueous solutions of N-methyldiethanolamine and piperazine in the low gas loading region. Journal of Chemical & Engineering Data, 2010, 55(1): 283–290
https://doi.org/10.1021/je9003383
18 Najibi H, Maleki N. Equilibrium solubility of carbon dioxide in N-methyldiethanolamine plus piperazine aqueous solution: Experimental measurement and prediction. Fluid Phase Equilibria, 2013, 354: 298–303
https://doi.org/10.1016/j.fluid.2013.06.022
19 Derks P W J, Hogendoorn J A, Versteeg G F. Experimental and theoretical study of the solubility of carbon dioxide in aqueous blends of piperazine and N-methyldiethanolamine. Journal of Chemical Thermodynamics, 2010, 42(1): 151–163
https://doi.org/10.1016/j.jct.2009.07.025
20 Vahidi M, Matin N S, Goharrokhi M, Jenab M H, Abdi M A, Najibi S H. Correlation of CO2 solubility in N-methyldiethanolamine+ piperazine aqueous solutions using extended Debye-Hückel model. Journal of Chemical Thermodynamics, 2009, 41(11): 1272–1278
https://doi.org/10.1016/j.jct.2009.05.017
21 Ali B S, Aroua M K. Effect of piperazine on CO2 loading in aqueous solutions of MDEA at low pressure. International Journal of Thermophysics, 2004, 25(6): 1863–1870
https://doi.org/10.1007/s10765-004-7740-7
22 Kamps A P S, Xia J Z, Maurer G. Solubility of CO2 in (H2O+ piperazine) and in (H2O+ MDEA+ piperazine). AIChE Journal. American Institute of Chemical Engineers, 2003, 49(10): 2662–2670
https://doi.org/10.1002/aic.690491019
23 Moioli S, Pellegrini L A. Regeneration section of CO2 capture plant by MEA scrubbing with a Rate-Based Model. Chemical Engineering Transactions, 2013, 32: 1849–1854
24 De Guido G, Langè S, Moioli S, Pellegrini L A. Thermodynamic method for the prediction of solid CO2 formation from multicomponent mixtures. Process Safety and Environmental Protection, 2014, 92(1): 70–79
https://doi.org/10.1016/j.psep.2013.08.001
25 Pellegrini L A, Moioli S, Brignoli F, Bellini C. LNG technology: The weathering in above-ground storage tanks. Industrial & Engineering Chemistry Research, 2014, 53(10): 3931–3937
https://doi.org/10.1021/ie404128d
26 Moioli S. The rate-based modelling of CO2 removal from the flue gases of power plants. WIT Transactions on Ecology and the Environment, 2014, 186: 635–646
https://doi.org/10.2495/ESUS140561
27 Edwards T J, Maurer G, Newman J, Prausnitz J M. Vapor-liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes. AIChE Journal. American Institute of Chemical Engineers, 1978, 24(6): 966–976
https://doi.org/10.1002/aic.690240605
28 Moioli S, Pellegrini L A. Improved rate-based modeling of the process of CO2 capture with PZ solution. Chemical Engineering Research & Design, 2015, 93: 611–620
https://doi.org/10.1016/j.cherd.2014.03.022
29 AspenTech. ASPEN Plus® Guidelines, Burlington, MA: AspenTech, 2014
30 Austgen D M, Rochelle G T, Chen C C. Model of vapor-liquid-equilibria for aqueous acid gas-alkanolamine systems. 2. Representation of H2S and CO2 solubility in aqueous MDEA and CO2 solubility in aqueous mixtures of MDEA with MEA or DEA. Industrial & Engineering Chemistry Research, 1991, 30(3): 543–555
https://doi.org/10.1021/ie00051a016
31 Haghtalab A, Eghbali H, Shojaeian A. Experiment and modeling solubility of CO2 in aqueous solutions of diisopropanolamine; 2-amino-2-methyl-1-propanol; Piperazine at high pressures. Journal of Chemical Thermodynamics, 2014, 71: 71–83
https://doi.org/10.1016/j.jct.2013.11.025
32 AspenTech. ASPEN Properties Databank®, Burlington, MA: AspenTech, 2014
33 Dash S K, Samanta A, Samanta A N, Bandyopadhyay S S. Vapour liquid equilibria of carbon dioxide in dilute and concentrated aqueous solutions of piperazine at low to high pressure. Fluid Phase Equilibria, 2011, 300(1-2): 145–154
https://doi.org/10.1016/j.fluid.2010.11.004
34 Chen X. Carbon dioxide thermodynamics, kinetics, and mass transfer in aqueous piperazine derivatives and other amines. Dissertation for the Doctoral Degree . Texas: The University of Texas, 2011
35 Posey M L. Thermodynamic model for acid gas loaded aqueous alkanolamine solutions. Dissertation for the Master Degree. Austin: University of Texas at Austin, 1995
36 Brelvi S W, O’Connell J P. Corresponding states correlations for liquid compressibility and partial molar volumes of gases at infinite dilution in liquids. AIChE Journal. American Institute of Chemical Engineers, 1972, 18(6): 1239–1243
https://doi.org/10.1002/aic.690180622
37 Brelvi S W, O'Connell J P. Prediction of unsymmetric convention liquid-phase activity coefficients of hydrogen and methane. AIChE Journal. American Institute of Chemical Engineers, 1975, 21(1): 157–160
https://doi.org/10.1002/aic.690210120
38 Redlich O, Kwong J N S. On the thermodynamics of solutions. V: An equation of state. Fugacities of gaseous solutions. Chemical Reviews, 1949, 44(1): 233–244
https://doi.org/10.1021/cr60137a013
39 Austgen D M A. Model of vapor-liquid equilibria for acid gas-alkanolamine-H2O systems. Dissertation for the Doctoral Degree. Texas: University of Texas, 1989
40 Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE Journal. American Institute of Chemical Engineers, 1968, 14(1): 135–144
https://doi.org/10.1002/aic.690140124
41 Chen C C, Britt H I, Boston J F, Evans L B. Extension and application of the Pitzer equation for vapor-liquid equilibrium of aqueous electrolyte systems with molecular solutes. AIChE Journal. American Institute of Chemical Engineers, 1979, 25(5): 820–831
https://doi.org/10.1002/aic.690250510
42 Chen C C, Britt H I, Boston J F, Evans L B. Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte systems. AIChE Journal. American Institute of Chemical Engineers, 1982, 28(4): 588–596
https://doi.org/10.1002/aic.690280410
43 Chen C C, Evans L B. A local composition model for the excess Gibbs energy of aqueous electrolyte systems. AIChE Journal. American Institute of Chemical Engineers, 1986, 32(3): 444–454
https://doi.org/10.1002/aic.690320311
44 Mock B, Evans L B, Chen C C. Thermodynamic representation of phase equilibria of mixed-solvent electrolyte systems. AIChE Journal. American Institute of Chemical Engineers, 1986, 32(10): 1655–1664
https://doi.org/10.1002/aic.690321009
45 Austgen D M, Rochelle G T, Peng X, Chen C C. Model of vapor liquid equilibria for aqueous acid gas alkanolamine systems using the electrolyte NRTL equation. Industrial & Engineering Chemistry Research, 1989, 28(7): 1060–1073
https://doi.org/10.1021/ie00091a028
46 Liu Y D, Zhang L Z, Watanasiri S. Representing vapor-liquid equilibrium for an aqueous MEA-CO2 system using the electrolyte nonrandom-two-liquid model. Industrial & Engineering Chemistry Research, 1999, 38(5): 2080–2090
https://doi.org/10.1021/ie980600v
47 Hessen E T, Haug-Warberg T, Svendsen H F. The refined e-NRTL model applied to CO2-H2O-alkanolamine systems. Chemical Engineering Science, 2010, 65(11): 3638–3648
https://doi.org/10.1016/j.ces.2010.03.010
48 Pellegrini L A, Langé S, Moioli S, Picutti B, Vergani P. Influence of gas impurities on thermodynamics of amine solutions. 1. Aromatics. Industrial & Engineering Chemistry Research, 2013, 52(5): 2018–2024
https://doi.org/10.1021/ie302827h
49 Langè S, Pellegrini L A, Moioli S, Picutti B, Vergani P. Influence of gas impurities on thermodynamics of amine solutions. 2. Mercaptans. Industrial & Engineering Chemistry Research, 2013, 52(5): 2025–2031
https://doi.org/10.1021/ie302829d
50 Bishnoi S, Rochelle G T. Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine. AIChE Journal. American Institute of Chemical Engineers, 2002, 48(12): 2788–2799
https://doi.org/10.1002/aic.690481208
51 Freguia S. Modeling of CO2 removal from flue gase with monoethanolamine. Dissertation for the Master Degree. Texas: The University of Texas, 2002
52 Britt H I, Luecke R H. The estimation of parameters in nonlinear, implicit models. Technometrics, 1973, 15(2): 233–247
https://doi.org/10.1080/00401706.1973.10489037
[1] Huiquan Wu, Erik Read, Maury White, Brittany Chavez, Kurt Brorson, Cyrus Agarabi, Mansoor Khan. Real time monitoring of bioreactor mAb IgG3 cell culture process dynamics via Fourier transform infrared spectroscopy: Implications for enabling cell culture process analytical technology? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 386-406.
[2] Jingcai ZHAO, Xingfu SONG, Ze SUN, Jianguo YU. Simulation on thermodynamic state of ammonia carbonation at low temperature and low pressure[J]. Front Chem Sci Eng, 2013, 7(4): 447-455.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed