Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (1) : 120-130    https://doi.org/10.1007/s11705-016-1559-1
RESEARCH ARTICLE
MILP synthesis of separation processes for waste oil-in-water emulsions treatment
Zorka N. Pintarič1,Gorazd P. Škof2,Zdravko Kravanja1,*()
1. Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000, Maribor, Slovenia
2. EKOLID, Ekološko svetovanje, Raziskave in razvoj, Ruška cesta 55, SI-2000, Maribor, Slovenia
 Download: PDF(410 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents a novel synthesis method for designing integrated processes for oil-in-water (O/W) emulsions treatment. General superstructure involving alternative separation technologies is developed and modelled as a mixed integer linear programming (MILP) model for maximum annual profit. Separation processes in the superstructure are divided into three main sections of which the pretreatment and final treatment are limited to the selection of one alternative (or bypass) only, while within the intermediate section various combinations of different technologies in series can be selected. Integrated processes composed of selected separation techniques for given ranges of input chemical oxygen demand (COD) can be proposed by applying parametric analyses within the superstructure approach. This approach has been applied to an existing industrial case study for deriving optimal combinations of technologies for treating diverse oil-in-water emulsions within the range of input COD values between 1000 mg?L?1 and 145000 mg?L?1. The optimal solution represents a flexible and profitable process for reducing the COD values below maximal allowable limits for discharging effluent into surface water.

Keywords oil-in-water emulsion      chemical oxygen demand      superstructure      process synthesis      MILP     
Corresponding Author(s): Zdravko Kravanja   
Online First Date: 22 February 2016    Issue Date: 29 February 2016
 Cite this article:   
Zorka N. Pintarič,Gorazd P. Škof,Zdravko Kravanja. MILP synthesis of separation processes for waste oil-in-water emulsions treatment[J]. Front. Chem. Sci. Eng., 2016, 10(1): 120-130.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1559-1
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I1/120
Fig.1  General superstructure of an integrated separation process for O/W emulsions
Fig.2  The case-study superstructure of the O/W emulsions separation process
Technologies Inv/? rchem/(t×t?1) relec/(kWh×t?1) fsl/(t×t?1) com/(?×t?1) fCOD(%) cCODUP/(mg×L?1)
Chemical pretreatment (CP) 0.022 1.7 0.15 30 n.a.a)
Mechanical pretreatment (MP) 5.5 0.10 15 n.a.
Chemical-mechanical pretreatment (CMP) 0.022 7.2 0.15 45 n.a.
Skimming (ST) 0.5 0.05 10 n.a.
Evaporation (EV) 180000 50.0 0.08 8.00 90 80000
Electrocoagulation (EC) 50000 0.4 0.15 10.00 60 50000
Ultrafiltration (UF1) 100000 3.0 0.20 5.00 63 25000
Ultrafiltration (UF2) 80000 3.0 0.20 5.00 34 25000
Reverse osmosis (RO) 12000 3.0 0.15 5.00 70 20000
Active carbon adsorption (ACA) 10000 0.003 0.10 95 n.a.
Tab.1  Data for different treatment technologies
Unit Value
Income price of O/W emulsion (cO/W) ?×t?1 100
Mass flow rate of O/W emulsion (qmO/W) t×h?1 1.7
Annual operating time (ft) h×y?1 1800
Average price of chemicals (cchem) ?×t?1 337
Price of active coal (cchem) ?×t?1 1860
Electricity price (celec) ?×(kWh)?1 0.111
Sludge treatment cost (csltr) ?×t?1 93
Depreciation period (tD) y 10
Limit COD value for water effluent (cCODUP) mg×L?1 120
Tab.2  Economic and operating data
COD /(mg×L?1) Pretreatment Intermediate treatment Final treat.
CP MP CMP ST EV EC UF1 UF2 RO ACA
1000
2000
3000
5000
10000
20000
30000
40000
50000
60000
70000
80000
90000
100000
110000
120000
130000
140000
145000
Tab.3  Combination of processes for different input COD values
Fig.3  Profit and total annual cost vs. COD of input O/W emulsion
Fig.4  Investment vs. COD of input O/W emulsion
Fig.5  Costs vs. COD of input O/W emulsion
Fig.6  Block diagram of the proposed integrated process for O/W treatment
Abbreviations
MSingle-choice mixer after intermediate unit
MfSingle-choice mixer in final treatment section
MinSingle-choice mixer in intermediate treatment section
MpSingle-choice mixer in pretreatment section
MPMechanical pretreatment
SSingle-choice splitter before intermediate unit
SfSingle-choice splitter in final treatment section
SinSingle-choice splitter in intermediate treatment section
SpSingle-choice splitter in pretreatment section
Symbols
cchemPrice of chemical, ??t?1
cCODCOD value, mg?L?1
celecElectricity price, ??(kWh)?1
comOperation and maintenance cost, ??t?1
csltrSludge treatment cost, ??t?1
cO/WIncome price of oil-in-water emulsion, ??t?1
cTACTotal annual cost, ??y?1
EelecElectricity power, kW
fCODCOD removal efficiency, -
fslSludge-generation factor, -
ftAnnual operating time, h?y?1
InvInvestment, ?
PBProfit before tax, ??y?1
qmMass flow rate, t?h?1
rchemSpecific consumption of chemicals, t?t?1
relecSpecific consumption of electricity, kWh?t?1
tDDepreciation period, y
yBinary variable, -
Sets and indices
F, fset and index of final treatment units
I, iset and index of intermediate treatment units
IM, imset and index of inlet streams of mixer Mi
im′subset of streams to mixers Mi from splitter Sin
IS, isset and index of outlet streams of splitter Si
is′subset of streams from splitter Si to mixer Min
P, pset and index of pretreatment units
Super- and subscripts
chemChemicals
eEffluent
iInlet
sSludge
UPUpper bound
Tab.1  
1 Cheng  C, Phipps  D, Alkhaddar  R M. Treatment of spent metalworking fluids. Water Research, 2005, 39(17): 4051–4063
https://doi.org/10.1016/j.watres.2005.07.012
2 Marinescu  I D, Rowe  W B, Dimitrov  B, Ohmori  H. Tribology of Abrasive Machining Processes.Oxford: Elsevier, 2013, 441–482
3 Benito  J M, Cambiella  A, Lobo  A, Coca  J, Gutiérrez  G, Pazos  C. Formulation, characterization and treatment of metalworking oil-in-water emulsions. Clean Technologies and Environmental Policy, 2010, 12(1): 31–41
4 Jamaly  S, Giwa  A, Hasan  S W. Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities. Journal of Environmental Sciences (China), 2015, 37: 15–30
https://doi.org/10.1016/j.jes.2015.04.011
5 Cañizares  P, Martínez  F, Jiménez  C, Sáez  C, Rodrigo  M A. Coagulation and electrocoagulation of oil-in-water emulsions. Journal of Hazardous Materials, 2008, 151(1): 44–51
https://doi.org/10.1016/j.jhazmat.2007.05.043
6 Gutiérrez  G, Lobo  A, Allende  D, Cambiella  A, Pazos  C, Coca  J, Benito  J M. Influence of coagulant salt addition on the treatment of oil-in-water emulsions by centrifugation, ultrafiltration, and vacuum evaporation. Separation Science and Technology, 2008, 43(7): 1884–1895
https://doi.org/10.1080/01496390801973953
7 Vatai  G N, Krstić  D M, Korisa  A K, Gáspára  I L, Tekić  M N. Ultrafiltration of oil-in-water emulsion: Comparison of ceramic and polymeric membranes. Desalination and Water Treatment, 2009, 3(1-3): 162–168 
https://doi.org/doi:10.5004/dwt.2009.455
8 Vasanth  D, Pugazhenthi  G, Uppaluri  R. Performance of low cost ceramic microfiltration membranes for the treatment of oil-in-water emulsions. Separation Science and Technology, 2013, 48(6): 849–858
https://doi.org/10.1080/01496395.2012.712598
9 Karimnezhad  H, Rajabi  L, Salehi  E, Derakhshan  A A, Azimi  S. Novel nanocomposite Kevlar fabric membranes: Fabrication, characterization, and performance in oil/water separation. Applied Surface Science, 2014, 293: 275–286
https://doi.org/10.1016/j.apsusc.2013.12.149
10 Vibhandik  A D, Marathe  K V. Removal of Ni(II) ions from wastewater by micellar enhanced ultrafiltration using mixed surfactants. Frontiers of Chemical Science and Engineering, 2014, 8(1): 79–86
https://doi.org/10.1007/s11705-014-1407-0
11 Mahmudov  R, Chen  C, Huang  C P. Functionalized activated carbon for the adsorptive removal of perchlorate from water solutions. Frontiers of Chemical Science and Engineering, 2015, 9(2): 194–208
https://doi.org/10.1007/s11705-015-1517-3
12 Twaiq  F, Nasser  M S, Onaizi  S A. Effect of the degree of template removal from mesoporous silicate materials on their adsorption of heavy oil from aqueous solution. Frontiers of Chemical Science and Engineering, 2014, 8(4): 488–497
https://doi.org/10.1007/s11705-014-1459-1
13 Chachou  L, Gueraini  Y, Bouhalouane  Y, Poncin  S, Li  H Z, Bensadok  K. Application of the electro-Fenton process for cutting fluid mineralization. Environmental Technology, 2015, 36(15): 1924–1932
https://doi.org/10.1080/09593330.2015.1016120
14 Benito  J M, Ríos  G, Ortea  E, Fernández  E, Cambiella  A, Pazos  C, Coca  J. Design and construction of a modular pilot plant for the treatment of oil-containing wastewaters. Desalination, 2002, 147(1-3): 5–10
https://doi.org/10.1016/S0011-9164(02)00563-5
15 Moulai M  N, Tir  M. Coupling flocculation with electroflotation for waste oil/water emulsion treatment. Optimization of the operating conditions. Desalination, 2004, 161(2): 115–121
https://doi.org/10.1016/S0011-9164(04)90047-1
16 Bensadok  K, Belkacem  M, Nezzal  G. Treatment of cutting oil/water emulsion by coupling coagulation and dissolved air flotation. Desalination, 2007, 206(1-3): 440–448
https://doi.org/10.1016/j.desal.2006.02.070
17 Gutiérrez  G, Lobo  A, Benito  J M, Coca  J, Pazos  C. Treatment of a waste oil-in-water emulsion from a copper-rolling process by ultrafiltration and vacuum evaporation. Journal of Hazardous Materials, 2011, 185(2-3): 1569–1574
https://doi.org/10.1016/j.jhazmat.2010.10.088
18 Santo  C E, Vilar  V J P, Botelho  C M S, Bhatnagar  A, Kumar  E, Boaventura  R A R. Optimization of coagulation-flocculation and flotation parameters for the treatment of a petroleum refinery effluent from a Portuguese plant. Chemical Engineering Journal, 2012, 183: 117–123
19 Jagadevan  S, Dobson  P, Thompson  I P. Harmonisation of chemical and biological process in development of a hybrid technology for treatment of recalcitrant metalworking fluid. Bioresource Technology, 2011, 102(19): 8783–8789
https://doi.org/10.1016/j.biortech.2011.07.031
20 Matos  M, Garcia  C F, Suarez  M A, Pazos  C, Benito  J M. Treatment of oil-in-water emulsions by a destabilization/ultrafiltration hybrid process: Statistical analysis of operating parameters. Journal of Taiwan Institute of Chemical Engineers, 2015, 
https://doi.org/doi:10.1016/j.jtice.2015.08.006
21 Rodrigues Pires da Silva J, Merçon  F, Firmino da Silva L, Cerqueira  A A, Ximango  P B, Marques M R C. Evaluation of electrocoagulation as pre-treatment of oil emulsions, followed by reverse osmosis. Journal of Water Process Engineering, 2015, 8: 126–135
22 Kobya  M, Demirbas  E, Bayramoglu  M, Sensoy  M T. Optimization of electrocoagulation process for the treatment of metal cutting wastewaters with response surface methodology. Water, Air, and Soil Pollution, 2011, 215(1-4): 399–410
https://doi.org/10.1007/s11270-010-0486-x
23 Jianzhong  S, Xiuqing  W, Xiaoyin  W. Optimizing oily wastewater treatment via wet peroxide oxidation using response surface methodology. Journal of the Korean Chemical Society, 2014, 58(1): 80–84
https://doi.org/10.5012/jkcs.2014.58.1.80
24 Yeber  M, Paul  E, Soto  C. Chemical and biological treatments to clean oily wastewater: Optimization of the photocatalytic process using experimental design. Desalination and Water Treatment, 2012, 47(1-3): 295–299
https://doi.org/10.1080/19443994.2012.696413
25 Ramin  B, Behrooz  M. Modeling and optimization of cross-flow ultrafiltration using hybrid neural network-genetic algorithm approach. Journal of Industrial and Engineering Chemistry, 2014, 20(2): 528–543
https://doi.org/10.1016/j.jiec.2013.05.012
26 Jing  L, Chen  B, Zhang  B, Li  P. Process simulation and dynamic control for marine oily wastewater treatment using UV irradiation. Water Research, 2015, 81: 101–112
https://doi.org/10.1016/j.watres.2015.03.023
27 Gallan  B, Grossmann  I E. Optimal design of real world industrial wastewater treatment networks. Computer-Aided Chemical Engineering, 2011, 29: 1251–1255
https://doi.org/10.1016/B978-0-444-54298-4.50029-5
28 Sueviriyapan  N, Siemanond  K, Quaglia  A, Gani  R, Suriyapraphadilok  U. The optimization-based design and synthesis of water network for water management in an industrial process: Refinery effluent treatment plant. Chemical Engineering Transactions, 2014, 39: 133–138
29 Government of the Republic of Slovenia, Decree on the emission of substances and heat in the discharge of wastewater into waters and public sewage system. Ljubljana: Official Gazette of the Republic of Slovenia, 2012, <Date>No. 64/2012</Date>
30 Rosenthal  R E. GAMS—A user’s guide. Washington: GAMS Development Corporation, 2015
[1] SHEN Jinfeng, YIN Xuan, GU Heping, Lv Xiaoping. Studies of ultrasound disintegration of residual sludge and its energy consumption in water treatment of petrochemical plant[J]. Front. Chem. Sci. Eng., 2007, 1(4): 395-398.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed