Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (1) : 131-138    https://doi.org/10.1007/s11705-016-1560-8
RESEARCH ARTICLE
Utilisation of waste heat from exhaust gases of drying process
Olga P. Arsenyeva1, Lidija Čuček2, Leonid L. Tovazhnyanskyy1, Petro O. Kapustenko1(), Yana A. Savchenko3, Sergey K. Kusakov3, Oleksandr I. Matsegora3
1. National Technical University “Kharkiv Polytechnic Institute”, Kharkiv 61002, Ukraine
2. Centre for Process Integration and Intensification-CPI2, Faculty of Information Technology, University of Pannonia, Egyetem utca 10, Veszprém, Hungary
3. AO SPIVDRUZHNIST-T LLC, Kharkiv 61002, Ukraine
 Download: PDF(395 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nowadays a lot of low-grade heat is wasted from the industry through the off- and flue-gasses with different compositions. These gases provide the sensitive heat with utilisation potential and latent heat with the components for condensation. In this paper, process integration methodology has been applied to the partly condensed streams. A hot composite curve that represents the gas mixture cooling according to equation of state for real gases was drawn to account the gas-liquid equilibrium. According to the pinch analysis methodology, the pinch point was specified and optimal minimal temperature difference was determined. The location of the point where gas and liquid phases can be split for better recuperation of heat energy within heat exchangers is estimated using the developed methodology. The industrial case study of tobacco drying process off-gasses is analysed for heat recovery. The mathematical model was developed by using MathCad software to minimise the total annualised cost using compact plate heat exchangers for waste heat utilisation. The obtained payback period for the required investments is less than six months. The presented method was validated by comparison with industrial test data.

Keywords exhaust gas      waste heat      process integration      plate heat exchanger     
Corresponding Author(s): Petro O. Kapustenko   
Online First Date: 19 February 2016    Issue Date: 29 February 2016
 Cite this article:   
Olga P. Arsenyeva,Lidija Čuček,Leonid L. Tovazhnyanskyy, et al. Utilisation of waste heat from exhaust gases of drying process[J]. Front. Chem. Sci. Eng., 2016, 10(1): 131-138.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1560-8
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I1/131
Fig.1  The examples of phase heat capacity flowrate variation with the temperature (a) gas phase CP G; (b) liquid phase CP L; (c) total CP.
No. Stream Type Supply temperature (t S) /°C Target temperature (t T) /°C Mass flowrate (G) /kg·s?1 Heat capacity flowrate (CP) /kW·K?1 Heat flow (D H) /kW
1 Exhaust gas Hot 140 5 0.278 ? 694
2 Ethylene glycol Cold 50 70 8.600 35 700
3 Hot water Cold 5 40 0.25 1.043 36.5
Tab.1  Stream data of the existing process
Fig.2  The composite curves for the existing process of tobacco drying section and radiator heating circuit
Fig.3  The composite curves for the proposed process with D T min = 1 °C
Fig.4  The grid diagram of integrated process with D T min = 18 °C
No. Parameter name, dimensions Value
1 Temperature after E1 /°C 55 58 63 68 73 78 83 88 93 98
2 HE1 area /m2 60.2 42.65 19.26 8.94 6.36 4.64 3.44 2.75 2.24 2.06
3 HE1 condensate out temperature /°C 53 55.2 58.5 61.9 65.3 68.9 72.8 77.0 81.9 87.7
4 HE1 condensate out flow rate /kg·s–1 0.249 0.248 0.247 0.246 0.244 0.243 0.240 0.236 0.230 0.219
5 HE1 heat load, kW 625.1 623.2 618.0 612.3 605.6 597.7 587.8 574.6 555.7 524.4
6 HE2 area /m2 1.6 1.184 0.864 0.736 0.576 0.48 0.448 0.416 0.384 0.352
7 HE2 heat load /kW 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5
8 Total heat load /kW 661.6 659.7 654.5 648.8 642.1 634.2 624.3 611.1 592.2 560.9
9 Heat leaving with gas phase /kW 32.4 34.3 39.5 45.2 51.9 59.8 69.7 82.9 101.8 133.1
10 D T min /K 5.0 8.0 13.0 18.0 23.0 28.0 33.0 38.0 43.0 48.0
Tab.2  The results of PHE calculations for different D T min and exhaust gas stream splitting
Fig.5  The influence of D T min on economic characteristics of exhaust gas heat utilisation (a) annual operational cost OPC, €/year; (b) annualised investment cost ACC, €/year; (c) total annual cost TAC, €/year
1 OECD/IEA. World Energy Outlook 2013. 2015
2 J Klemeš, F Friedler, I Bulatov, P Varbanov. Sustainability in the process industry. Integration and optimization. New York: The McGraw-Hill Co-s. Inc, 2010
3 G Oluleye, M Jobson, R Smith, S J Perry. Evaluating the potential of process sites for waste heat recovery. Applied Energy, 2016, 161: 627–646
https://doi.org/10.1016/j.apenergy.2015.07.011
4 M Khaled, M Ramadan, H El Hage. Parametric analysis of heat recovery from exhaust gases of generators. Energy Procedia, 2015, 75: 3295–3300
https://doi.org/10.1016/j.egypro.2015.07.710
5 B Kilkovsky, P Stehlik, Z Jegla, L L Tovazhnyansky, O Arsenyeva, P O Kapustenko. Heat exchangers for energy recovery in waste and biomass to energy technologies–I. Energy recovery from flue gas. Applied Thermal Engineering, 2014, 64(1): 213–223
https://doi.org/10.1016/j.applthermaleng.2013.11.041
6 P Szulc, T Tietze, K Wójs. Numerical analysis of a waste heat recovery process with account of condensation of steam from flue gases. Archives of Civil and Mechanical Engineering, 2015, 15(4): 1017–1023
https://doi.org/10.1016/j.acme.2015.05.002
7 S Maalouf, E B Ksayer, D Clodic. Investigation of direct contact condensation for wet flue-gas waste heat recovery using Organic Rankine Cycle. Energy Conversion and Management, 2016, 107: 96–102
https://doi.org/10.1016/j.enconman.2015.09.047
8 M T Zegenhagen, F Ziegler. Simple models for the heat exchange from exhaust gas to super- and sub-critical refrigerant R134a at high temperature differences. Applied Thermal Engineering, 2015, 89: 990–1000
https://doi.org/10.1016/j.applthermaleng.2015.06.075
9 X Han, M Liu, J Wang, J Yan, J Liu, F Xiao. Simulation study on lignite-fired power system integrated with flue gas drying and waste heat recovery–Performances under variable power loads coupled with off-design parameters. Energy, 2014, 76: 406–418
https://doi.org/10.1016/j.energy.2014.08.032
10 C Xu, G Xu, Y Yang, S Zhao, K Zhang, D Zhang. An improved configuration of low-temperature pre-drying using waste heat integrated in an air-cooled lignite fired power plant. Applied Thermal Engineering, 2015, 90: 312–321
https://doi.org/10.1016/j.applthermaleng.2015.06.101
11 M Aziz, T Oda, T Kashiwagi. Enhanced high energy efficient steam drying of algae. Applied Energy, 2013, 109: 163–170
https://doi.org/10.1016/j.apenergy.2013.04.004
12 B Golman, W Julklang. Simulation of exhaust gas heat recovery from a spray dryer. Applied Thermal Engineering, 2014, 73(1): 899–913
https://doi.org/10.1016/j.applthermaleng.2014.08.045
13 W Julklang, B Golman. Effect of process parameters on energy performance of spray drying with exhaust air heat recovery for production of high value particles. Applied Energy, 2015, 151: 285–295
https://doi.org/10.1016/j.apenergy.2015.04.069
14 A Hamad, M E Fayed. Simulation-aided optimization of volatile organic compounds recovery using condensation. Chemical Engineering Research & Design, 2004, 82(7): 895–906
https://doi.org/10.1205/0263876041596724
15 J J Klemeš, ed. Handbook of Process Integration (PI): Minimisation of Energy and Water Use, Waste and Emissions. Cambridge: Woodhead/Elsevier, 2013, 127–350
16 A Nemet, J J Klemeš, P S Varbanov, W Mantelli. Heat integration retrofit analysis—an oil refinery case study by Retrofit Tracing Grid Diagram. Frontiers of Chemical Science and Engineering, 2015, 9(2): 163–182
https://doi.org/10.1007/s11705-015-1520-8
17 J J Klemeš, O Arsenyeva, P Kapustenko, L Tovazhnyanskyy. Compact Heat Exchangers for Energy Transfer Intensification: Low Grade Heat and Fouling Mitigation. Florida: CRC Press, 2015, 283–314
18 J Y Yong, P S Varbanov, J J Klemeš. Heat exchanger network retrofit supported by extended grid diagram and heat path development. Applied Thermal Engineering, 2015, 89: 1033–1045
https://doi.org/10.1016/j.applthermaleng.2015.04.025
19 O Redlich, J N Kwong. On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions. Chemical Reviews, 1949, 44(1): 233–244
https://doi.org/10.1021/cr60137a013
20 R L Rowley, W V Wilding, J L Oscarson, Y Yang, N A Zundel, T E Daubert, R P Danner. DIPPR data compilation of pure chemical properties. Design Institute for Physical Properties. New York: AICHE, 2007
21 Perry’s Chemical Engineers’ Handbook. New York: McGraw-Hill, 2008, 4-1: 4–36
22 R Smith. Chemical Process: Design and Integration. West Sussex, UK: John Wiley & Sons, Ltd., 2005, 399–550
23 Alfa Laval. TS6 Plate Heat Exchanger. 2015
24 Alfa Laval. M3 Plate Heat Exchanger. 2015
25 L L Tovazhnyansky, P A Kapustenko. Heat and mass transfer in the condensation of steam from a steam and gas mixture in plate condenser channels. Teploenergetika, 1984, 2: 52–54 (in Russian)
26 L L Tovazhnyansky, P O Kapustenko, O G Nagorna, O Y Perevertaylenko. The simulation of multicomponent mixtures condensation in plate condensers. Heat Transfer Engineering, 2004, 25(5): 16–22
https://doi.org/10.1080/01457630490467202
27 O P Arsenyeva, L L Tovazhnyansky, P O Kapustenko, G L Khavin. Optimal design of plate-and-frame heat exchangers for efficient heat recovery in process industries. Energy, 2011, 36(8): 4588–4598
https://doi.org/10.1016/j.energy.2011.03.022
28 A O Gariev, J J Klemeš, S K Kusakov, L L Tovazhnyanskyy, P Anokhin, P O Kapustenko, O P Arsenyeva, L Čuček. The development of heat substation for drying waste heat utilisation. Chemical Engineering Transactions, 2014, 39: 1405–1410
29 S Gendebien, S Bertagnolio, V Lemort. Investigation on a ventilation heat recovery exchanger: Modeling and experimental validation in dry and partially wet conditions. Energy and buildings, 2013, 62: 176–189
[1] Petro Kapustenko, Jiří J. Klemeš, Olga Arsenyeva, Olexandr Matsegora, Oleksandr Vasilenko. Accounting for local features of fouling formation on PHE heat transfer surface[J]. Front. Chem. Sci. Eng., 2018, 12(4): 619-629.
[2] Ruifeng DONG, Zaoxiao ZHANG, Hongfang LU, Yunsong YU. Recovery of waste heat in cement plants for the capture of CO2[J]. Front Chem Sci Eng, 2012, 6(1): 104-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed