Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (2) : 294-300    https://doi.org/10.1007/s11705-016-1564-4
RESEARCH ARTICLE
Two-dimensional self-assembly of melem and melemium cations at pH-controlled aqueous solution–Au(111) interfaces under electrochemical control
Shinobu Uemura1,*(),Kenki Sakata2,Masashi Aono2,Yusuke Nakamura2,Masashi Kunitake2,*()
1. Department of Advanced Materials Sciences, Faculty of Engineering, Kagawa University, Kagawa 761-0396, Japan
2. Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
 Download: PDF(2618 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two-dimensional self-assembly of melem at pH-controlled aqueous solution-Au(111) interfaces has been investigated by electrochemical scanning tunneling microscopy. In the solutions with pH>pKb1 of melem, two ordered self-assembled structures (honeycomb and close-packed structures) and one disordered fibrillar structure were observed as a function of the surface coverage of melem controlled by the electrode potential. In contrast, in the acidic solution with pH<pKb1 of melem, only the self-assembled honeycomb network was observed in a relatively wide potential range probably due to the presence of monoprotonated melem cations. Dots attributed to counteranions were frequently observed in the pores of the honeycomb network. The lack of close-packed and fibrillar structures at low pH (<pKb1) is attributed to ionic repulsion of melemium cations.

Keywords self-assembly      scanning tunneling microscopy      electrochemistry      structural phase transition      melem     
Corresponding Author(s): Shinobu Uemura,Masashi Kunitake   
Online First Date: 24 March 2016    Issue Date: 19 May 2016
 Cite this article:   
Shinobu Uemura,Kenki Sakata,Masashi Aono, et al. Two-dimensional self-assembly of melem and melemium cations at pH-controlled aqueous solution–Au(111) interfaces under electrochemical control[J]. Front. Chem. Sci. Eng., 2016, 10(2): 294-300.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1564-4
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I2/294
Fig.1  Chemical structures of (a) melem and (b and c) monoprotonated melemium cations
Fig.2  (a), (b), and (d) Typical STM images and (e) the structural model of melem at the 0.1 mol?L?1 HClO4 solution-Au(111) interface. (c) High-resolution image of melem at the weakly basic solution-Au(111) interface. (a) Es = -0.04 V, It = 30 nA, and Ebias = -0.20 V. (d) Es = +0.43 V, It = 10 nA, and Ebias = -0.30 V
Fig.3  (a?c) Typical STM images and (d?f) the corresponding schematic structural models of melem at the 0.1 mol?L?1 NaClO4 aqueous solution with pH ≈ 6-Au(111) interface. (a) Es = ?0.30 V, It = 10 nA, and Ebias = ?0.20 V. (b) Es = ?0.10 V, It = 2.0 nA, and Ebias = ?0.20 V. (c) Es = 0.35 V, It = 1.0 nA, and Ebias = ?0.40 V
Fig.4  Serial STM images of melem fibrils. Solution conditions: 1.5 × 10?5 mol?L?1 melem in 0.02 mol?L?1 NaClO4 aqueous solution. The same aggregates are indicated by white arrows. The scale bar is 5 nm. Es = 0.50 V, It = 2.0 nA, and Ebias = ?0.40 V
Fig.5  (a) and (b) Cyclic voltammograms of melem using Au(111) electrodes and (c) schematic illustration of the potential ranges of each structure. In (a), the red solid line is 9 × 10?6 mol?L?1 melem in 0.1 mol?L?1 HClO4 and the black dashed line is bare Au(111) in 0.1 mol?L?1 HClO4. In (b), the grey solid line is 9 × 10?6 mol?L?1 melem in weakly basic aqueous solution with pH>9 and the grey dashed line is bare Au(111) in weakly basic aqueous solution with pH>9. The data (b) are adopted with permission from Ref. 15. Copyright 2011 American Chemical Society
pH and electrolyte Cathodic peak /mV Peak separation /mV Charge of peaks /C Calculated charge /C
9<pH<10(0.1 mol?L?1 NaClO4 and NaOH) ?86 54 6.1 × 10?8 1.2 × 10?6a)
5<pH<6(0.1 mol?L?1 NaClO4) 231 75 8.2 × 10?8 1.2 × 10?6a)
pH<2(0.1 mol?L?1 HClO4) 426 188 4.0 × 10?7 9.5 × 10?7b)
Tab.1  Peak potentials and the charge of the peak from cyclic voltammograms in 9.0 × 10-6 mol?L?1 melem aqueous solutions using an Au(111) electrode
1 Mali K S, De Feyter S. Principles of molecular assemblies leading to molecular nanostructures. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 2013, 371(2000): 20120304
https://doi.org/10.1098/rsta.2012.0304
2 Elemans J A A W, Lei S, De Feyter S. Molecular and supramolecular networks on surfaces: From two-dimensional crystal engineering to reactivity. Angewandte Chemie International Edition, 2009, 48(40): 7298–7332
https://doi.org/10.1002/anie.200806339
3 Kudernac T, Lei S, Elemans J A A W, De Feyter S. Two-dimensional supramolecular self-assembly: Nanoporous networks on surfaces. Chemical Society Reviews, 2009, 38(2): 402–421
https://doi.org/10.1039/B708902N
4 Kunitake M, Higuchi R, Tanoue R, Uemura S. Self-assembled p-conjugated macromolecular architectures—a soft solution process based on Schiff base coupling. Current Opinion in Colloid & Interface Science, 2014, 19(2): 140–154
https://doi.org/10.1016/j.cocis.2014.03.003
5 Zhuang X, Mai Y, Wu D, Zhang F, Feng X. Two-dimensional soft nanomaterials: A fascinating world of materials. Advanced Materials, 2015, 27(3): 403–427
https://doi.org/10.1002/adma.201401857
6 Schwarzer A, Saplinova T, Kroke E. Tri-s-triazines (s-heptazines)—from a “mystery molecule” to industrially relevant carbon nitride materials. Coordination Chemistry Reviews, 2013, 257(13‒14): 2032–2062
https://doi.org/10.1016/j.ccr.2012.12.006
7 Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 2009, 8(1): 76–80
https://doi.org/10.1038/nmat2317
8 Franklin E C. The ammono carbonic acids. Journal of the American Chemical Society, 1922, 44(3): 486–509
https://doi.org/10.1021/ja01424a007
9 Finkel’shtein A I, Spiridonova N V. Chemical properties and molecular structure of derivatives of sym-heptazine [1,3,4,6,7,9,9b-heptaaza-phenalene, tri-1,3,5-triazine]. Russian Chemical Reviews, 1964, 33(7): 400–405
https://doi.org/10.1070/RC1964v033n07ABEH001443
10 Takimoto M, Yokoyama T, Sawada M, Yamashita M. Isolation of melam and melem from fused products of dicyandiamide and melamine and some of their properties. Kogyo Kagaku Zasshi, 1963, 66(6): 793–797
https://doi.org/10.1246/nikkashi1898.66.6_793
11 Komatsu T. The first synthesis and characterization of cyameluric high polymers. Macromolecular Chemistry and Physics, 2001, 202(1): 19–25
https://doi.org/10.1002/1521-3935(20010101)202:1<19::AID-MACP19>3.0.CO;2-G
12 Jürgens B, Irran E, Senker J, Kroll P, Müller H, Schnick W. Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. Journal of the American Chemical Society, 2003, 125(34): 10288–10300
https://doi.org/10.1021/ja0357689
13 Miller D R, Swenson D C, Gillan E G. Synthesis and structure of 2,5,8-triazido-s-heptazine: An energetic and luminescent precursor to nitrogen-rich carbon nitrides. Journal of the American Chemical Society, 2004, 126(17): 5372–5373
https://doi.org/10.1021/ja048939y
14 Schwarzer A, Böhme U, Kroke E. Use of melem as a nucleophilic reagent to form the triphthalimide C6N7(phthal)3—new targets and prospects. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(38): 12052–12058
https://doi.org/10.1002/chem.201200723
15 Uemura S, Aono M, Komatsu T, Kunitake M. Two-dimensional self-assembled structures of melamine and melem at the aqueous solution-Au(111) interface. Langmuir, 2011, 27(4): 1336–1340
https://doi.org/10.1021/la103948n
16 Eichhorn J, Schlögl S, Lotsch B V, Schnick W, Heckl W M, Lackinger M. Self-assembly of melem on Ag(111)—emergence of porous structures based on amino-heptazine hydrogen bonds. CrystEngComm, 13(11): 5559–5565
17 Uemura S, Aono M, Sakata K, Komatsu T, Kunitake M. Thermodynamic control of 2D bicomponent porous networks of melamine and melem: Diverse hydrogen-bonded networks. Journal of Physical Chemistry C, 2013, 117(47): 24815–24821
https://doi.org/10.1021/jp406810c
18 Yoshimoto S, Itaya K. Adsorption and assembly of ions and organic molecules at electrochemical interfaces: Nanoscale aspects. Annual Review of Analytical Chemistry (Palo Alto, Calif.), 2013, 6(1): 213–235
https://doi.org/10.1146/annurev-anchem-062012-092559
19 Uemura S, Tanoue R, Yilmaz N, Ohira A, Kunitake M. Molecular dynamics in two-dimensional supramolecular systems observed by STM. Materials (Basel), 2010, 3(8): 4252–4276
https://doi.org/10.3390/ma3084252
20 Phan T H, Breuer S, Hahn U, Pham D T, Torres T, Wandelt K. Unusual demetalation and ordered adsorption of a pyridine-appended zinc phthalocyanine at metal-electrolyte interfaces studied by in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. Journal of Physical Chemistry C, 2014, 118(1): 457–467
https://doi.org/10.1021/jp410002p
21 Ye T, He Y, Borguet E. Adsorption and electrochemical activity: An in situ electrochemical scanning tunneling microscopy study of electrode reactions and potential-induced adsorption of porphyrins. Journal of Physical Chemistry B, 2006, 110(12): 6141–6147
https://doi.org/10.1021/jp053358w
22 Dai P X, Chen T, Wang D, Wan L J. Potential dependent adsorption geometry of 2,5-dihydroxybenzoic acid on a Au(111) Surface: An in situ electrochemical scanning tunneling microscopy study. Journal of Physical Chemistry C, 2012, 116(10): 6208–6214
https://doi.org/10.1021/jp210119m
23 Yuan Q H, Xing Y, Borguet E. An STM study of the pH dependent redox activity of a two-dimensional hydrogen bonding porphyrin network at an electrochemical interface. Journal of the American Chemical Society, 2010, 132(14): 5054–5060
https://doi.org/10.1021/ja907397u
24 Sattler A, Schnick W. Preparation and structure of melemium melem perchlorate HC6N7(NH2)3ClO4·C6N7(NH2)3. Zeitschrift fur Anorganische und Allgemeine Chemie, 2008, 634(3): 457–460
https://doi.org/10.1002/zaac.200700447
25 Sattler A, Seyfarth L, Senker J, Schnick W. Syntheses, crystal structures and spectroscopic properties of the melem adduct C6N7(NH2)3·H3PO4 and the melemium salts (H2C6N7(NH2)3)SO4·2H2O and (HC6N7(NH2)3)ClO4·H2O. Zeitschrift fur Anorganische und Allgemeine Chemie, 2005, 631(13‒14): 2545–2554
https://doi.org/10.1002/zaac.200500017
26 NunknownN0N00N.In our investigation, melem is dissolved into 0.1 mol∙L‒1 perchloric acid solution (pH= 1.3) at least around 6 × 10‒5 mol∙L‒1NunknownN
27 Li Z, Han B, Wan L J, Wandlowski T. Supramolecular nanostructures of 1,3,5-benzene-tricarboxylic acid at electrified Au(111)/0.05 mol∙L‒1 H2SO4 interfaces: An in situ scanning tunneling microscopy study. Langmuir, 2005, 21(15): 6915–6928
https://doi.org/10.1021/la0507737
28 Zhang H M, Xie Z X, Long L S, Zhong H P, Zhao W, Mao B W, Xu X, Zheng L S. One-step preparation of large-scale self-assembled monolayers of cyanuric acid and melamine supramolecular species on Au(111) surfaces. Journal of Physical Chemistry C, 2008, 112(11): 4209–4218
https://doi.org/10.1021/jp076916a
29 Ivasenko O, Macleod J M, Chernichenko K Y, Balenkova E S, Shpanchenko R V, Nenajdenko V G, Rosei F, Perepichka D F. Supramolecular assembly of heterocirculenes in 2D and 3D. Chemical Communications, 2009, 10: 1192–1194
https://doi.org/10.1039/b819532c
30 Griessl S J H, Lackinger M, Jamitzky F, Markert T, Hietschold M, Heckl W. Room-temperature scanning tunneling microscopy manipulation of single C60 molecules at the liquid-solid interface: Playing nanosoccer. Journal of Physical Chemistry B, 2004, 108(31): 11556–11560
https://doi.org/10.1021/jp049521p
31 Cardenas M L, Lipton-Duffin J, Rosei F. Transformations of molecular frameworks by host-guest response: Novel routes toward two-dimensional self-assembly at the solid-liquid interface. Japanese Journal of Applied Physics, 2011, 50(8S3): 08LA02
https://doi.org/10.7567/JJAP.50.08LA02
32 Ma X, Yang Y, Deng K, Zeng Q, Zhao K, Wang C, Bai C. Molecular miscibility characteristics of self-assembled 2D molecular architectures. Journal of Materials Chemistry, 2008, 18(18): 2074–2081
https://doi.org/10.1039/b713426f
33 Wang H, Kaiser T E, Uemura S, Würthner F. Perylene bisimide J-aggregates with absorption maxima in the NIR. Chemical Communications, 2008, 10: 1181–1183
https://doi.org/10.1039/b717407a
34 SamoríP, Severin N, Simpson C D, Müllen K, Rabe J P. Epitaxial composite layers of electron donors and acceptors from very large polycyclic aromatic hydrocarbons. Journal of the American Chemical Society, 2002, 124(32): 9454–9457
https://doi.org/10.1021/ja020323q
35 Uemura S, Sakata M, Taniguchi I, Hirayama C, Kunitake M. In situ observation of coronene epitaxial adlayers on Au(111) surfaces prepared by the transfer of Langmuir films. Thin Solid Films, 2002, 409(2): 206–210
https://doi.org/10.1016/S0040-6090(02)00087-1
36 Elemans J A A W, Lensen M C, Gerritsen J W, van Kempen H, Speller S, Nolte R J M, Rowan A E. Scanning probe studies of porphyrin assemblies and their supramolecular manipulation at a solid-liquid interface. Advanced Materials, 2003, 15(24): 2070–2073
https://doi.org/10.1002/adma.200305602
37 Sek S, Xu S, Chen M, Szymanski G, Lipkowski J. Molecular resolution imaging of an antibiotic peptide in a lipid matrix. Journal of the American Chemical Society, 2008, 130(17): 5736–5743
https://doi.org/10.1021/ja711020q
38 Gutzler R, Sirtl T, Dienstmaier J F, Mahata K, Heckl W M, Schmittel M, Lackinger M. Reversible phase transitions in self-assembled monolayers at the liquid-solid interface: Temperature-controlled opening and closing of nanopores. Journal of the American Chemical Society, 2010, 132(14): 5084–5090
https://doi.org/10.1021/ja908919r
[1] Xin Wang, Wei Cui, Bin Li, Xiaojie Zhang, Yongxin Zhang, Yaodong Huang. Supramolecular self-assembly of two-component systems comprising aromatic amides/Schiff base and tartaric acid[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1112-1121.
[2] Yawen Yao, Sabine Rosenfeldt, Kai Zhang. Effects of solvents and temperature on spherulites of self-assembled phloroglucinol tristearate[J]. Front. Chem. Sci. Eng., 2020, 14(3): 389-396.
[3] Aramballi J. Savyasachi, David F. Caffrey, Kevin Byrne, Gerard Tobin, Bruno D'Agostino, Wolfgang Schmitt, Thorfinnur Gunnlaugsson. Self-assembled bright luminescent hierarchical materials from a tripodal benzoate antenna and heptadentate Eu(III) and Tb(III) cyclen complexes[J]. Front. Chem. Sci. Eng., 2019, 13(1): 171-184.
[4] Yaodong Huang, Shuxue Liu, Zhuofeng Xie, Zipei Sun, Wei Chai, Wei Jiang. Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response[J]. Front. Chem. Sci. Eng., 2018, 12(2): 252-261.
[5] Jie Zhou, Xuewen Du, Jiaqing Wang, Natsuko Yamagata, Bing Xu. Enzyme-instructed self-assembly of peptides containing phosphoserine to form supramolecular hydrogels as potential soft biomaterials[J]. Front. Chem. Sci. Eng., 2017, 11(4): 509-515.
[6] Yan Zhai,Wei Chai,Wenwen Cao,Zipei Sun,Yaodong Huang. Organogelators based on p-alkoxylbenzamide and their self-assembling properties[J]. Front. Chem. Sci. Eng., 2015, 9(4): 488-493.
[7] Zipei SUN,Xuelin DONG,Yan ZHAI,Ziyan Li,Yaodong HUANG. 2,5-Dialkoxylphenyl-1,3,4-oxadiazoles as efficient organogelators and their self-assembling property[J]. Front. Chem. Sci. Eng., 2014, 8(2): 219-224.
[8] QIAN Qinghua, HU Yuyan, WEN Gaofei, FENG Xin, LU Xiao-hua. Preparation and gaseous photocatalytic activity of smooth potassium dititanate film[J]. Front. Chem. Sci. Eng., 2008, 2(3): 308-314.
[9] YANG Zhifang, WU Jingao, YANG Yingkui, ZHOU Xingping, XIE Xiaolin. Control on self-assembly structures of rod-coil-rod (PANI)-(PEG)-(PANI) triblock copolymer[J]. Front. Chem. Sci. Eng., 2008, 2(1): 85-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed