Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (2) : 281-293    https://doi.org/10.1007/s11705-016-1568-0
RESEARCH ARTICLE
Stability of Ni/SiO2-ZrO2 catalysts towards steaming and coking in the dry reforming of methane with carbon dioxide
Bettina Stolze1,Juliane Titus1,Stephan A. Schunk2,Andrian Milanov3,Ekkehard Schwab3,Roger Gläser1,*()
1. Institute of Chemical Technology, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
2. hte GmbH, Kurpfalzring 104, 69123 Heidelberg, Germany
3. BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
 Download: PDF(895 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ni/SiO2-ZrO2 catalysts with Ni loadings of 1 to 13 wt-% were prepared, characterized by elemental analysis, X-ray diffraction, N2 sorption, temperature programmed oxidation, temperature programmed reduction, and tested for their activity and stability in the dry reforming of methane with carbon dioxide at 850 °C, gas hourly space velocity of 6000 and 1800 h–1 and atmospheric pressure. The SiO2-ZrO2 support as obtained through a simple and efficient sol-gel synthesis is highly porous (ABET = 90 m2·g–1, dP = 4.4 nm) with a homogeneously distributed Si-content of 3 wt-%. No loss of Si or formation of monoclinic ZrO2, even after steaming at 850 °C for 160 h, was detectable. The catalyst with 5 wt-% Ni loading in its fully reduced state is stable over 15?h on-stream in the dry reforming reaction. If the catalyst was not fully reduced, a reduction during the early stages of dry reforming is accompanied by the deposition of up to 44 mg·g–1carbon as shown by experiments in a magnetic suspension balance. Rapid coking occurs for increased residence times and times-on-stream starting at 50 h. The Ni loading of 5 wt-% on SiO2-ZrO2 was shown to provide an optimal balance between activity and coking tendency.

Keywords Ni/SiO2-ZrO2      synthesis gas      dry reforming      coking      steaming     
Corresponding Author(s): Roger Gläser   
Just Accepted Date: 31 March 2016   Online First Date: 27 April 2016    Issue Date: 19 May 2016
 Cite this article:   
Bettina Stolze,Juliane Titus,Stephan A. Schunk, et al. Stability of Ni/SiO2-ZrO2 catalysts towards steaming and coking in the dry reforming of methane with carbon dioxide[J]. Front. Chem. Sci. Eng., 2016, 10(2): 281-293.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1568-0
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I2/281
Fig.1  CH4 conversion and molar ratio n H 2 / n CO as a function of time-on-stream in the DRM over 5Ni/SiO2-ZrO2 (batch 1) for the first and second use (T=850 °C, GHSV=6.0×103 h?1, n CH 4 / n CO 2 / n Ar = 47.5/47.5/5.0)
X CH 4 X nH2/nCO C-selectivity /%
Td. equil. 0.95 0.97 0.97 0.00
Pt/ZrO2 0.87 0.93 0.93 0.04
5Ni/SiO2-ZrO2
1st use 0.70 0.79 0.88 0.04
2nd use 0.78 0.90 0.86 not detectable
Tab.1  CH4 and CO2 conversion, n H 2 / n CO -molar ratio and C-selectivity under thermodynamic equilibrium (Td. equil.) and after 15 h on-stream in the DRM over Pt/ZrO2 and 5Ni/SiO2-ZrO2 (batch 1) for the first and second use (T = 850 °C, GHSV= 6.0 × 103 h?1, n CH 4 / n CO 2 / n Ar = 47.5/47.5/5.0)
Fig.2  Mass change Dm and temperature profile during DRM and oxidative regeneration for 5Ni/SiO2-ZrO2 (batch 1) (DRM : T = 850 °C, GHSV= 3 × 104 h?1, n CH 4 / n CO 2 / n A r = 47.5/47.5/5.0; regeneration: T = 850 °C, Fair = 10 cm3·min?1)
Fig.3  PXRD patterns of 5Ni/SiO2-ZrO2 (batch 1) before (fresh) and after (regenerated) use in DRM (reaction conditions as in Fig. 1) and oxidative regeneration (T = 850 °C, Fair = 10 cm3·min?1). Simulated XRD patterns of cubic (c-ZrO2) and tetragonal (t-ZrO2) zirconia are also included [44]
Fig.4  N2-Sorption isotherms (left) and pore width distribution (from the desorption branch of the isotherms, right) of 5Ni/SiO2-ZrO2 (batch 1) before the catalytic experiment (fresh) and after use in DRM and oxidative regeneration (regenerated; conditions as in Fig. 3)
Fig.5  TPR-profiles of 5Ni/SiO2-ZrO2 (batch 1) before the catalytic experiment (fresh) and after use in DRM and oxidative regeneration (regenerated; conditions as in Fig. 3)
ABET /(m2·g?1) VBJH /(cm3·g?1) dBJH /nm EA dNi /nm
Before steaming 72 0.06 3.4 4.7 wt-% Ni 2.9 wt-% Si 60.0 wt-% Zr 34
After steaming 18 0.02 4.0 3.4 wt-% Ni 3.0 wt-% Si 63.0 wt-% Zr 67
Tab.2  Specific BET surface area, BJH pore volume and average BJH pore diameter, content of Ni, Si and Zr from elemental analysis (EA) and Ni particle diameter dNi from XRD (Scherrer equation) for 5Ni/SiO2-ZrO2 (batch 2) before and after steaming
Fig.6  PXRD patterns (left) and N2-sorption isotherms (right) of 5Ni/SiO2-ZrO2 (batch 2) before (fresh) and after steaming (T = 850 °C, t = 160 h, m H 2 O = 2 g·h?1)
Fig.7  CH4 and CO2 conversion as well as n H 2 / n CO -molar ratio and C-selectivity (from TGA) for 5Ni/SiO2-ZrO2 (batch 1) after different times-on-stream in DRM (T = 850 °C, GHSV= 1.8×103 h?1, n CH 4 / n CO 2 = 1/1)
ABET /(m2·g?1) VBJH /(cm3·g?1) dBJH /nm
5Ni/SiO2-ZrO2 fresh 90 0.10 4.4
After 2 h 90 0.10 4.4
After 20 h 85 0.10 4.6
After 30 h 82 0.10 4.7
After 40 h 80 0.10 4.8
After 50 h 72 0.10 4.8
After 60 h 62 0.08 4.7
Tab.3  Specific BET surface area, BJH pore volume and average BJH pore diameter for 5Ni/SiO2-ZrO2 (batch 1) before (fresh) the catalytic experiments and after different times-on-stream in DRM (T = 850 °C, GHSV= 1.8×103 h?1, n CH 4 / n CO 2 = 1/1)
Fig.8  HRTEM images of a CNT (left) and of carbon layers encapsulating a Ni particle (right) formed on 5Ni/SiO2-ZrO2 (batch 1) after 60 h on-stream in DRM (T = 850 °C, GHSV= 1.8×103 h?1, n CH 4 / n CO 2 = 1/1)
Fig.9  Diameter distribution of Ni particles determined from TEM images (ESI, Fig. 6S) for 5Ni/SiO2-ZrO2 (batch 1) after 2 h (left) and after 60 h on-stream in DRM (T = 850 °C, GHSV= 1.8×103 h?1, n CH 4 / n CO 2 = 1/1)
xNi /wt-% ABET /(m2·g?1) VBJH /(cm3·g?1) dBJH /nm
1Ni 1.3 n.d.a) n.d. n.d.
2Ni 2.0 88 0.05 3.5
3Ni 2.7 n.d. n.d. n.d.
4Ni 3.6 n.d. n.d. n.d.
5Ni 4.7 79 0.05 2.9
10Ni 6.7 n.d.a) n.d. n.d.
15Ni 13.3 67 0.04 3.1
Tab.4  Ni content xNi, specific BET surface area, BJH pore volume and average BJH pore diameter for Ni/SiO2-ZrO2 catalysts with different Ni contents
Fig.10  PXRD patterns of Ni/SiO2-ZrO2 catalysts (batch 2, fresh) with different Ni loadings in wt-% (● Ni, ▲ NiO)
Fig.11  TPR profiles of Ni/SiO2-ZrO2 (batch 2, fresh) with different Ni loadings
1 Havran V, Dudukovic M P, Lo C S. Conversion of methane and carbon dioxide to higher value products. Industrial & Engineering Chemistry Research, 2011, 50(12): 7089–7100
https://doi.org/10.1021/ie2000192
2 York A P E, Xiao T, Green M L H, Claridge J B. Methane oxyforming for synthes is gas production. Catalysis Reviews, 2007, 49(4): 511–560
https://doi.org/10.1080/01614940701583315
3 Wender I. Reactions of synthesis gas. Fuel Processing Technology, 1996, 48(3): 189–297
https://doi.org/10.1016/S0378-3820(96)01048-X
4 Wang S, Lu G Q, Millar G J. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: State of the art. Energy & Fuels, 1996, 10(4): 896–904
https://doi.org/10.1021/ef950227t
5 Rostrup-Nielsen J R, Sehested J, Norskov J K. Hydrogen and syntheis gas by steam and CO2 reforming. Advances in Catalysis, 2002, 47: 65–139
https://doi.org/10.1016/S0360-0564(02)47006-X
6 Kroll V C H, Swann H M, Mirodatos C. Methane reforming reaction with carbon dioxide over Ni/SiO2 catalyst. Journal of Catalysis, 1996, 161(1): 409–422
https://doi.org/10.1006/jcat.1996.0199
7 Pakhare D, Spivey J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chemical Society Reviews, 2014, 43(22): 7813–7837
https://doi.org/10.1039/C3CS60395D
8 Itkulova S S, Zhunusova K Z, Zakumbaeva G D. CO2 reforming of methane over Co-Pd/Al2O3 catalysts. Bulletin of the Korean Chemical Society, 2005, 26(12): 2017–2020
https://doi.org/10.5012/bkcs.2005.26.12.2017
9 Bitter J H, Seshan K, Lercher J A. Mono and bifunctional pathways of CO2/CH4 reforming over Pt and Rh based catalysts. Journal of Catalysis, 1998, 176(1): 93–101
https://doi.org/10.1006/jcat.1998.2022
10 Swaan H M, Kroll V C H, Martin G A, Mirodatos C. Deactivation of supported nickel catalysts during the redorming of methane by carbon dioxide. Catalysis Today, 1994, 2(2-3): 571–578
https://doi.org/10.1016/0920-5861(94)80181-9
11 Liu C J, Ye J, Jiang J, Pan Y. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. ChemCatChem, 2011, 3(3): 529–541
https://doi.org/10.1002/cctc.201000358
12 Budiman A W, Song S H, Chang T S, Shin C H, Choi M J. Dry reforming of methane over cobalt catalysts: A literature review of catalyst developent. Catalysis Surveys from Asia, 2012, 16(4): 183–197
https://doi.org/10.1007/s10563-012-9143-2
13 Benrabaa R, Löfberg A, Rubbens A, Bordes-Richard E, Vannier R N, Barama A. Structure, reactivity and catalytic properties of nanoparticles of nickel ferrite in the dry reforming of methane. Catalysis Today, 2013, 203: 188–195
https://doi.org/10.1016/j.cattod.2012.06.002
14 Rostrup-Niesen J P. Catalytic Steam Reforming in Catalysis. In: Anderson J R, Boudart M, eds. Catalysis-Science & Technology. Berlin: Springer, 1984, 1–117
15 Sajjadi S M, Haghighi M, Eslami A A, Rahmani F. Hydrogen production via CO2-reforming of methane over Cu and Co doped Ni/Al2O3 nanocatalyst: Impregnation versus sol-gel method and effect of process conditions and promoter. Journal of Sol-Gel Science and Technology, 2013, 67(3): 601–617
https://doi.org/10.1007/s10971-013-3120-8
16 Al-Fatesh A S, Naeem M A, Fakeeha A H, Abasaeed A E. CO2 reforming of methane to produce syngas over g-Al2O3-supported NiSr catalysts. Bulletin of the Chemical Society of Japan, 2013, 86(6): 742–748
https://doi.org/10.1246/bcsj.20130002
17 Sutthiumporn K, Maneerung T, Kathiraser Y, Kawi S. CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M= Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on CeH activation and carbon suppression. International Journal of Hydrogen Energy, 2012, 37(15): 11195–11207
https://doi.org/10.1016/j.ijhydene.2012.04.059
18 Han J W, Kim C, Park J S, Lee H. Highly coke-resistant Ni nanoparticle catalysts with minimal sintering in dry reforming of methane. ChemSusShem, 2014, 7: 7451–7456
19 Kang K M, Kim H W, Shim I W, Kwak H Y. Catalytic test of supported Ni catalysts with core/shell structure for dry reforming of methane. Fuel Processing Technology, 2011, 92(6): 1236–1243
https://doi.org/10.1016/j.fuproc.2011.02.007
20 Gardner T H, Spivey J J, Kugler E L, Pakhare D. CH4-CO2 reforming over Ni-substituted barium hexaaluminate catalysts. Applied Catalysis A, 2013, 455: 129–136
https://doi.org/10.1016/j.apcata.2013.01.029
21 Roussiere T, Schelkle K M, Titlbach S, Wasserschaff G, Milanov A, Cox G, Schwab E, Deutschmann O, Schulz L, Jentys A, Lercher J A, Schunk S A. Structure-activity relationships of nickel-hexaaluminatesin reforming reactions. Part I: Controlling Nickel nanoparticle growth and phase formation. ChemCatChem, 2014, 6: 1438–1446
22 Roussiere T, Schelkle K M, Titlbach S, Wasserschaff G, Milanov A, Cox G, Schwab E, Deutschmann O, Schulz L, Jentys A, Lercher J A, Schunk S A. Structure-activity relationships of nickel-hexaaluminates in reforming reactions. Part II: Activity and stability of nanostructured nickel-hexaaluminate-based catalysts in the dry reforming of methane. ChemCatChem, 2014, 6: 1447–1452
23 Bhavani G A, Kim W Y, Lee J S. Barium substituted lanthanum manganite perovskite for CO2 reforming of methane. ACS Catalysis, 2013, 3(7): 1537–1544
https://doi.org/10.1021/cs400245m
24 Titus J, Roussière T, Wasserschaff G, Schunk S A, Milanov A, Schwab E, Wagner G, Oeckler O, Gläser R. Dry reforming of methane wth carbon dioxide over NiO-MgO-ZrO2. Catalysis Today, 2015, doi: 10.1016/j.cattod.2015.09.027
25 Frontera P, Macario A, Aloise A, Antonucci P L, Giordano G, Nagy J B. Effect of support surface on methane dry-reforming catalyst preparation. Catalysis Today, 2013, 218: 18–29
https://doi.org/10.1016/j.cattod.2013.04.029
26 Rezaei M, Alavi S M, Sahebdelfar S, Liu X M, Qian L, Yan Z F. CO2-CH4 reforming over Nickel catalysts supported on mesoporous nanocrystalline zirconia with high surface area. Energy & Fuels, 2007, 21(2): 581–589
https://doi.org/10.1021/ef0606005
27 Liang B, Ding C. Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying. Surface and Coatings Technology, 2005, 197(2-3): 185–192
https://doi.org/10.1016/j.surfcoat.2004.08.225
28 Shen R, Shafrir S N, Miao C, Wang M, Lambropoulos J C, Jacobs J D, Yang H. Synthesis and corrosion study of zirconia-coated carboyl iron particles. Journal of Colloid and Interface Science, 2010, 342(1): 49–56
https://doi.org/10.1016/j.jcis.2009.09.033
29 Peters A, Nouzoori F, Richter D, Lutecki M, Gläser R. Nickel-loaded zirconia catalysts with large specific surface area for high-temperature catalytic applications. ChemCatChem, 2011, 3(3): 598–606
https://doi.org/10.1002/cctc.201000277
30 Rezaei M, Alavi S M, Sahebdelfar S, Bai R, Liu X M, Yan Z F. CO2 reforming of CH4 over nanocrystalline zirconia-supported nickel catalysts. Applied Catalysis B: Environmental, 2008, 77(3-4): 346–354
https://doi.org/10.1016/j.apcatb.2007.08.004
31 Cassiers K, Linssen T, Aerts K, Cool P, Lebedev O, Van Tendeloo G, Van Grieken R, Vansant E F. Controlled formation of amine-templated mesostructured zirconia with remarkably high thermal stability. Journal of Materials Chemistry, 2003, 13(12): 3033–3039
https://doi.org/10.1039/b310200a
32 Ciesla U, Schacht S, Stucky D G, Unger K K, Schüth F. Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis. Angewandte Chemie International Edition, 1996, 35(5): 541–543
https://doi.org/10.1002/anie.199605411
33 Lutecki M, Solcova O, Werner S, Breitkopf C. Synthesis and characterization of nanostructured sulfated zirconias. Journal of Sol-Gel Science and Technology, 2010, 53(1): 13–20
https://doi.org/10.1007/s10971-009-2045-8
34 Centi G, Cerrato G, D’Angelo S, Finardi U, Giamello E, Morterra C, Perathoner S. Catalytic behavior and nature of active sites in copper-on-zirconia catalysts for the decomposition of N2O. Catalysis Today, 1996, 27(1-2): 265–270
https://doi.org/10.1016/0920-5861(95)00197-2
35 del Monte F, Larsen W, Mackenzie J D. Stabilization of tetragonal ZrO2 in ZrO2-SiO2 binary oxides. Journal of the American Ceramic Society, 2000, 83(3): 628–634
https://doi.org/10.1111/j.1151-2916.2000.tb01243.x
36 del Monte F, Larsen W, Mackenzie J D. Chemical interactions promoting the ZrO2 tetragonal stabilization in ZrO2-SiO2 binary oxides. Journal of the American Ceramic Society, 2000, 83(6): 1506–1512
https://doi.org/10.1111/j.1151-2916.2000.tb01418.x
37 Ho S M. On the structural chemistry of zirconium oxide. Matererials. Science and Engeniering, 1982, 54: 23–29
38 Chuah G K, Jaenicke S. The preparation of high surface area zirconia—influence of precipitating agent and digestion. Applied Catalysis A, 1997, 163(1-2): 261–273
https://doi.org/10.1016/S0926-860X(97)00103-8
39 Chuah G K, Jaenicke S, Cheong S A, Chan K S. The influence of preparation conditions on the surface area of zirconia. Applied Catalysis A, 1996, 145(1-2): 267–248
https://doi.org/10.1016/0926-860X(96)00152-4
40 Chuah G K, Jaenicke S, Pong B K. The preparation of high-surface-area zirconia: II. Influence of precipitating agent and digestion on the morphology and microstructure of hydrous zirconia. Journal of Catalysis, 1998, 175(1): 80–92
https://doi.org/10.1006/jcat.1998.1980
41 Chuah G K, Liu H S, Jaenicke J, Li J. High surface area zirconia by digestion of zirconium propoxide at different pH. Microporous and Mesoporous Materials, 2000, 39(12): 381–392
https://doi.org/10.1016/S1387-1811(00)00189-X
42 Viinikainen T, Rönkkönen H, Bradshaw H, Stephenson H, Airaksinen S, Reinikainen M, Simell P, Krause O. Acidic and basic surface sites of zirconia-based biomass gasification gas clean-up catalysts. Applied Catalysis A, 2009, 362(1-2): 169–177
https://doi.org/10.1016/j.apcata.2009.04.037
43 Liu D, Wang Y, Shi D, Jia X, Wang X, Borgna A, Lau R, Yang Y. Methane reforming with carbon dioxide over a Ni/ZiO2SiO2 catalyst: Influence of pretreatment gas atmospheres. International Journal of Hydrogen Energy, 2012, 37(13): 10135–10144
https://doi.org/10.1016/j.ijhydene.2012.03.158
44 Putz H, Brandenburg K. Match!: Phase Identification from Powder Diffraction, Bonn, Crystal Impact 2003‒2012.
45 Rodriguez J A, Hanson J C, Frenkel A I, Kim J Y, Perez M. Experimental and theoretical studies on the reaction of H2 with NiO: Role of O vacancies and mechanism for oxide reduction. Journal of the American Chemical Society, 2002, 124(2): 346–354
https://doi.org/10.1021/ja0121080
46 Kahle L C S, Roussière T, Maier L, Herrera Delgado K, Wasserschaff G, Schunk S A, Deutschmann O. Methane dry reforming at high temperature and elevated pressure: Impact of gas-phase reactions. Industiral & Engeniering Chemistry Research, 2013, 52(34): 11920–11930
https://doi.org/10.1021/ie401048w
47 Guo J, Lou H, Zheng X M. The deposition of coke from methane on a Ni/MgAl2O4 catalyst. Carbon, 2007, 45(6): 1314–1321
https://doi.org/10.1016/j.carbon.2007.01.011
48 Bychkov V Y, Tyulenin Y P, Firsova A A, Shafranovsky A E, Gorenberg A Y, Korchak V N. Carbonization of nickel catalysts and its effect on methane dry reforming. Applied Catalysis A, 2013, 453: 71–79
https://doi.org/10.1016/j.apcata.2012.12.006
49 Pan W, Song C. Using tapered element oscillating microbalance for in situ monitoring of carbon deposition on nickel catalyst during CO2 reforming of methane. Catalysis Today, 2009, 148(3-4): 232–242
https://doi.org/10.1016/j.cattod.2009.09.002
50 Pompeo F, Nichio N N, Souza M M, Cesar D V, Ferretti O A, Schmal M. Study of Ni and Pt catalysts supported on a-Al2O3 and ZrO2 applied in methane reforming with CO2. Applied Catalysis A, 2007, 316(2): 175–138
https://doi.org/10.1016/j.apcata.2006.09.007
51 Stagg-Williams S M, Noronha F B, Fendley G, Resasco D E. CO2 reforming of CH4 over Pt/ZrO2 catalysts promoted with La and Ce oxides. Journal of Catalysis, 2000, 194(2): 240–249
https://doi.org/10.1006/jcat.2000.2939
52 Montoya J A, Romero-Pascual E, Gimon C, Del Angel P, Monzón A. Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts prepared by sol-gel. Catalysis Today, 2000, 63(1): 71–85
https://doi.org/10.1016/S0920-5861(00)00447-8
53 Gonzalez-Delacruz V M, Pereniguez R, Ternero F, Holgado J P, Caballero A. Modifying the size of nickel metallic particles by H2/CO treatment in Ni/ZrO2 methane dry reforming catalysts. ACS Catalysis, 2011, 1(2): 82–88
https://doi.org/10.1021/cs100116m
54 Pohling R. Chemische Reaktionen in der Wasseranalyse. Berlin: Springer-Verlag, 2015
55 San-José-Alonso D, Juan-Juan J, Illán-Gómez M J, Román-Martínez M C. Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane. Applied Catalysis A, 2009, 371(1-2): 54–59
https://doi.org/10.1016/j.apcata.2009.09.026
56 Zhou L, Li L, Wei N, Li J, Basset J M. Effect of NiAl2O4 formation on Ni/Al2O3 stability during dry reforming of methane. ChemCatChem, 2015, 7(16): 2508–2516
https://doi.org/10.1002/cctc.201500379
57 Fan M S, Abdullah A Z, Bhatia S. Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni-Co/MgO-ZrO2: Preparation, characterization and activity studies. Applied Catalysis B: Environmental, 2010, 100(1-2): 365–377
https://doi.org/10.1016/j.apcatb.2010.08.013
58 Cai W, Ye L, Zhang L, Ren Y, Yue B, Chen X, He H. Highly dispersed Nickel-containing mesoporous silica with superior stability in carbon dioxide reforming of methane: The effect of anchoring. Materials (Basel), 2014, 7(3): 2340–2355
https://doi.org/10.3390/ma7032340
[1] Supplementary Material Download
[1] Xiangchun Liu, Ping Cui, Qiang Ling, Zhigang Zhao, Ruilun Xie. A review on co-pyrolysis of coal and oil shale to produce coke[J]. Front. Chem. Sci. Eng., 2020, 14(4): 504-512.
[2] Alan J. McCue, Jura Aponaviciute, Richard P.K. Wells, James A. Anderson. Gold modified cobalt-based Fischer-Tropsch catalysts for conversion of synthesis gas to liquid fuels[J]. Front Chem Sci Eng, 2013, 7(3): 262-269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed